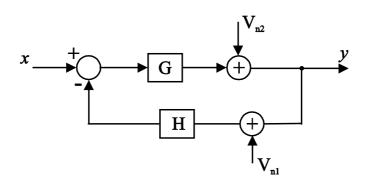
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA

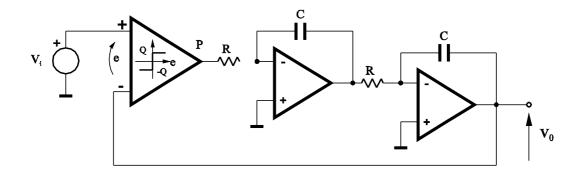
ÁREA: CONTROL

CÁTEDRA: Sistemas de Control (403) - Plan 1996

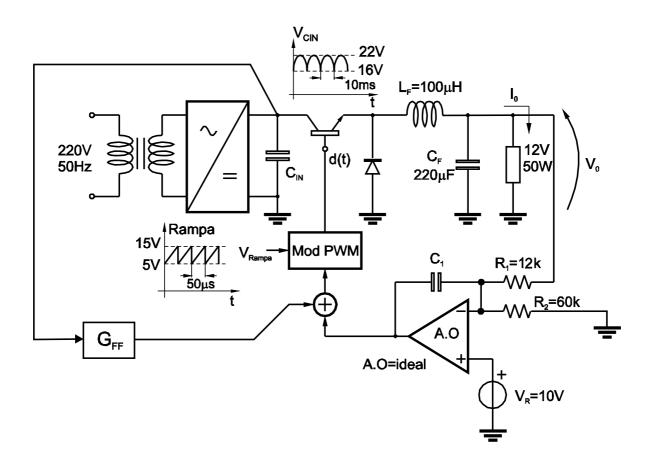

Sistemas de Control (4C8) - Plan 2003

FINAL: 12 de Julio de 2010

Nombre:	Matricula:	Plan:
---------	------------	-------


Problema 1:

El sistema de control genérico mostrado en la figura debe proveer un rechazo de 20 dB a las dos perturbaciones mostradas, V_{n1} y V_{n2} , de frecuencias ω_1 y ω_2 respectivamente. Ambas perturbaciones presentan una relación ω_2 / ω_1 = 100. Asimismo, se requiere que el error al escalón en régimen permanente sea <u>nulo</u>. Dibujar un posible diagrama de Bode de GH que verifique las condiciones exigidas.


Problema 2:

Construir el plano de fase de coordenadas (e,\dot{e}) para el circuito de la figura. Asumir que la entrada $v_i(t)$ es un escalón unitario. Suponer que los amplificadores operacionales son ideales: $Z_i \to \infty$, $r_0=0$ y $A(\omega)$ considerablemente grande. Evaluar las condiciones iniciales (x_{10},x_{20}) si los capacitores se encuentran inicialmente descargados. Mostrar dicho punto en el plano de fase. No es necesario utilizar isoclinas para el trazado.

Problema 3:

El circuito de la figura corresponde a una fuente de precisión que alimenta la lámpara de un espectrofotómetro óptico (12V/50W). Para garantizar la vida útil de la lámpara y una lectura óptica poco sensible a variaciones de red y estable, es necesario que $\Delta V_0/V_0 \le 10^{-2}$.

- 1) Calcular ΔIL_{MAX} para el peor caso y determinar si la fuente opera en CCM.
- 2) Calcular el ripple ΔV_0 a la frecuencia de conmutación.
- 3) Determinar el rango de ciclo de trabajo de operación y su valor promedio.
- 4) Calcular Q_F del filtro de salida.
- 5) Dibujar un diagrama en bloques identificando cada transferencia. Incluir el efecto del ripple ΔV_{CIN} sobre V_0 .
- 6) Calcular C₁ y trazar el diagrama de Bode asociado, garantizando estabilidad y el mayor rechazo posible a la frecuencia perturbadora ω_D =2 π 100r/s.
- 7) Calcular el ripple sobre V_0 debido a la perturbación ΔV_{CIN} .
- 8) Determinar $G_{FF}(s)$ a fin de cumplir con $\Delta V_0/V_0 \le 10^{-2}$.