
Chapter 5
Describing Function Analysis

The frequency response method is a powerful tool for the analysis and design of linear
control systems. It is based on describing a linear system by a complex-valued
function, the frequency response, instead of a differential equation. The power of the
method comes from a number of sources. First, graphical representations can be used
to facilitate analysis and design. Second, physical insights can be used, because the
frequency response functions have clear physical meanings. Finally, the method's
complexity only increases mildly with system order. Frequency domain analysis,
however, cannot be directly applied to nonlinear systems because frequency response
functions cannot be defined for nonlinear systems.

Yet, for some nonlinear systems, an extended version of the frequency response
method, called the describing function method, can be used to approximately analyze
and predict nonlinear behavior. Even though it is only an approximation method, the
desirable properties it inherits from the frequency response method, and the shortage
of other systematic tools for nonlinear system analysis, make it an indispensable
component of the bag of tools of practicing control engineers. The main use of
describing function method is for the prediction of limit cycles in nonlinear systems,
although the method has a number of other applications such as predicting
subharmonics, jump phenomena, and the response of nonlinear systems to sinusoidal
inputs.

This chapter presents an introduction to the describing function analysis of
nonlinear systems. The basic ideas in the describing function method are presented in
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section 5.1. Section 5.2 discusses typical "hard nonlinearities" in control engineering,
since describing functions are particularly useful for studying control systems
containing such nonlinearities. Section 5.3 evaluates the describing functions for
these hard nonlinearities. Section 5.4 is devoted to the description of how to use the
describing function method for the prediction of limit cycles.

5.1 Describing Function Fundamentals

In this section, we start by presenting describing function analysis using a simple
example, adapted from [Hsu and Meyer, 1968]. We then provide the formal definition
of describing functions and some techniques for evaluating the describing functions of
nonlinear elements.

5.1.1 An Example of Describing Function Analysis

The interesting and classical Van der Pol equation

x + a(x2-\)x + x = 0 (5.1)

(where a is a positive constant) has been treated by phase-plane analysis and
Lyapunov analysis in the previous chapters. Let us now study it using a different
technique, which shall lead us to the concept of a describing function. Specifically, let
us determine whether there exists a limit cycle in this system and, if so, calculate the
amplitude and frequency of the limit cycle (pretending that we have not seen the phase
portrait of the Van der Pol equation in Chapter 2). To this effect, we first assume the
existence of a limit cycle with undetermined amplitude and frequency, and then
determine whether the system equation can indeed sustain such a solution. This is
quite similar to the assumed-variable method in differential equation theory, where we
first assume a solution of certain form, substitute it into the differential equation, and
then attempt to determine the coefficients in the solution.

Before carrying out this procedure, let us represent the system dynamics in a
block diagram form, as shown in Figure 5.1. It is seen that the feedback system in 5.1
contains a linear block and a nonlinear block, where the linear block, although
unstable, has low-pass properties.

Now let us assume that there is a limit cycle in the system and the oscillation
signal x is in the form of

x(t) =/\sin(coO
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Figure 5.1 : Feedback interpretation of the Van der Pol oscillator

with A being the limit cycle amplitude and co being the frequency. Thus,

x(t) =Acocos(a>0

Therefore, the output of the nonlinear block is

w = -x2x = -A2sin2((Of) Atocos(toz)

( l - cos(2coO ) cos(tor) = - d _ ^ (cos(a>0 - cos(3a>0 )

It is seen that w contains a third harmonic term. Since the linear block has low-pass
properties, we can reasonably assume that this third harmonic term is sufficiently
attenuated by the linear block and its effect is not present in the signal flow after the
linear block. This means that we can approximate w by

A3 A2 A

w = - — cocosccw = [-Asin(cor)]
4 4 d!

so that the nonlinear block in Figure 5.1 can be approximated by the equivalent
"quasi-linear" block in Figure 5.2. The "transfer function" of the quasi-linear block
depends on the signal amplitude A, unlike a linear system transfer function (which is
independent of the input magnitude).

In the frequency domain, this corresponds to

w = N(A, co) ( - x ) (5.2)

where
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Figure 5.2 : Quasi-linear approximation of the Van der Pol oscillator

N(A, co) = ^ ( j

That is, the nonlinear block can be approximated by the frequency response function
N(A, co). Since the system is assumed to contain a sinusoidal oscillation, we have

x = A sin(cor) = G(j(n) w = G(jco) N(A, co) ( - x )

where G(y'co) is the linear component transfer function. This implies that

+ A2(jco) a = 0
4 C/co)2-a<jco) + l

Solving this equation, we obtain

A = 2 co= 1

Note that in terms of the Laplace variable p, the closed-loop characteristic equation of
this system is

1 +- •P a
4 p2 - ap +

whose eigenvalues are

= 0

X,,2 = - ia(A2-4) ± |±a2(A2-4)2 -

(5.3)

(5.4)

Corresponding to A = 2, we obtain the eigenvalues A,j2 = ±7- This indicates the
existence of a limit cycle of amplitude 2 and frequency 1. It is interesting to note
neither the amplitude nor the frequency obtained above depends on the parameter a in

J
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In the phase plane, the above approximate analysis suggests that the limit cycle
is a circle of radius 2, regardless of the value of a. To verify the plausibility of this
result, the real limit cycles corresponding to the different values of a are plotted
(Figure 5.3). It is seen that the above approximation is reasonable for small value of
a, but that the inaccuracy grows as a increases. This is understandable because as a
grows the nonlinearity becomes more significant and the quasi-linear approximation
becomes less accurate.

limit cycle

Figure 5.3 : Real limit cycles on the phase plane

The stability of the limit cycle can also be studied using the above analysis. Let
us assume that the limit cycle's amplitude A is increased to a value larger than 2.
Then, equation (5.4) shows that the closed-loop poles now have a negative real part.
This indicates that the system becomes exponentially stable and thus the signal
magnitude will decrease. Similar conclusions are obtained assuming that the limit
cycle's amplitude A is decreased to a value less than 2. Thus, we conclude that the
limit cycle is stable with an amplitude of 2.

Note that, in the above approximate analysis, the critical step is to replace the
nonlinear block by the quasi-linear block which has the frequency response function
(A2/4) (j(0). Afterwards, the amplitude and frequency of the limit cycle can be
determined from 1 + G(ja>) N(A, co) = 0. The function N(A, co) is called the describing
function of the nonlinear element. The above approximate analysis can be extended to
predict limit cycles in other nonlinear systems which can be represented into the block
diagram similar to Figure 5.1, as we shall do in section 5.4.
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Before moving on to the formal treatment of the describing function method, let us
briefly discuss what kind of nonlinear systems it applies to, and what kind of
information it can provide about nonlinear system behavior.

THE SYSTEMS

Simply speaking, any system which can be transformed into the configuration in
Figure 5.4 can be studied using describing functions. There are at least two important
classes of systems in this category.

Nonlinear Element Linear Element

r(0 = 0
w=f(x)

wft)
G(p)

y(0

Figure 5.4 : A nonlinear system

The first important class consists of "almost" linear systems. By "almost" linear
systems, we refer to systems which contain hard nonlinearities in the control loop but
are otherwise linear. Such systems arise when a control system is designed using
linear control but its implementation involves hard nonlinearities, such as motor
saturation, actuator or sensor dead-zones, Coulomb friction, or hysteresis in the plant.
An example is shown in Figure 5.5, which involves hard nonlinearities in the actuator.

Example 5.1: A system containing only one nonlinearity

Consider the control system shown in Figure 5.5. The plant is linear and the controller is also

linear. However, the actuator involves a hard nonlinearity. This system can be rearranged into the

form of Figure 5.4 by regarding G

nonlinearity as the nonlinear element.

as the linear component G, and the actuator

D

"Almost" linear systems involving sensor or plant nonlinearities can be
similarly rearranged into the form of Figure 5.4.

The second class of systems consists of genuinely nonlinear systems whose
dynamic equations can actually be rearranged into the form of Figure 5.4. We saw an
example of such systems in the previous section.

i
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Figure 5.5 : A control system with hard nonlinearity

APPLICATIONS OF DESCRIBING FUNCTIONS

For systems such as the one in Figure 5.5, limit cycles can often occur due to the
nonlinearity. However, linear control cannot predict such problems. Describing
functions, on the other hand, can be conveniently used to discover the existence of
limit cycles and determine their stability, regardless of whether the nonlinearity is
"hard" or "soft." The applicability to limit cycle analysis is due to the fact that the
form of the signals in a limit-cycling system is usually approximately sinusoidal. This
can be conveniently explained on the system in Figure 5.4. Indeed, asssume that the
linear element in Figure 5.4 has low-pass properties (which is the case of most
physical systems). If there is a limit cycle in the system, then the system signals must
all be periodic. Since, as a periodic signal, the input to the linear element in Figure 5.4
can be expanded as the sum of many harmonics, and since the linear element, because
of its low-pass property, filters out higher frequency signals, the output y(t) must be
composed mostly of the lowest harmonics. Therefore, it is appropriate to assume that
the signals in the whole system are basically sinusoidal in form, thus allowing the
technique in subsection 5.1.1 to be applied.

Prediction of limit cycles is very important, because limit cycles can occur
frequently in physical nonlinear system. Sometimes, a limit cycle can be desirable.
This is the case of limit cycles in the electronic oscillators used in laboratories.
Another example is the so-called dither technique which can be used to minimize the
negative effects of Coulomb friction in mechanical systems. In most control systems,
however, limit cycles are undesirable. This may be due to a number of reasons:

1. limit cycle, as a way of instability, tends to cause poor control accuracy

2. the constant oscillation associated with the limit cycles can cause
increasing wear or even mechanical failure of the control system
hardware

3. limit cycling may also cause other undesirable effects, such as passenger
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discomfort in an aircraft under autopilot

In general, although a precise knowledge of the waveform of a limit cycle is usually
not mandatory, the knowledge of the limit cycle's existence, as well as that of its
approximate amplitude and frequency, is critical. The describing function method can
be used for this purpose. It can also guide the design of compensators so as to avoid
limit cycles.

5.1.3 Basic Assumptions

Consider a nonlinear system in the general form of Figure 5.4. In order to develop the
basic version of the describing function method, the system has to satisfy the
following four conditions:

1. there is only a single nonlinear component

2. the nonlinear component is time-invariant

3. corresponding to a sinusoidal input x= sin(coO , only the fundamental
component Wj(f) in the output w(t) has to be considered

4. the nonlinearity is odd

The first assumption implies that if there are two or more nonlinear components
in a system, one either has to lump them together as a single nonlinearity (as can be
done with two nonlinearities in parallel), or retain only the primary nonlinearity and
neglect the others.

The second assumption implies that we consider only autonomous nonlinear
systems. It is satisfied by many nonlinearities in practice, such as saturation in
amplifiers, backlash in gears, Coulomb friction between surfaces, and hysteresis in
relays. The reason for this assumption is that the Nyquist criterion, on which the
describing function method is largely based, applies only to linear time-invariant
systems.

The third assumption is the fundamental assumption of the describing function
method. It represents an approximation, because the output of a nonlinear element
corresponding to a sinusoidal input usually contains higher harmonics besides the
fundamental. This assumption implies that the higher-frequency harmonics can all be
neglected in the analysis, as compared with the fundamental component. For this
assumption to be valid, it is important for the linear element following the nonlinearity
to have low-pass properties, i.e.,

|G(jco)| » | G(;«co) | for n = 2, 3,... (5.5)
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This implies that higher harmonics in the output will be filtered out significantly.
Thus, the third assumption is often referred to as the filtering hypothesis.

The fourth assumption means that the plot of the nonlinearity relation f(x)
between the input and output of the nonlinear element is symmetric about the origin.
This assumption is introduced for simplicity, i.e., so that the static term in the Fourier
expansion of the output can be neglected. Note that the common nonlinearities
discussed before all satisfy this assumption.

The relaxation of the above assumptions has been widely studied in literature,
leading to describing function approaches for general situations, such as multiple
nonlinearities, time-varying nonlinearities, or multiple-sinusoids. However, these
methods based on relaxed conditions are usually much more complicated than the
basic version, which corresponds to the above four assumptions. In this chapter, we
shall mostly concentrate on the basic version.

5.1.4 Basic Definitions

Let us now discuss how to represent a nonlinear component by a describing function.
Let us consider a sinusoidal input to the nonlinear element, of amplitude A and
frequency co, i.e., x(t) = Asin(au), as shown in Figure 5.6. The output of the nonlinear
component w{i) is often a periodic, though generally non-sinusoidal, function. Note
that this is always the case if the nonlinearity fix) is single-valued, because the output
is/[Asin(oo(/+2n:/GO))] =/[Asin(cor)]. Using Fourier series, the periodic function w(t)
can be expanded as

oo

w(0 = —+ ~^[ancos(n(i)t) + bnsin(n(i)t)] (5.6)

where the Fourier coefficients a('s and bfs are generally functions of A and (0,
determined by

ao = -\* w(t)d((M) (5.7a)

a = I f * w(t)cos (no)t)d(at) (5.7b)
KJ-K

bn = -\K w(t)sm(n(nt)d((tit) (5.7c)
ft - i t
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A sin(tt) t)
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w(t) A sin((0 t)
N(A, w)

M sin

Figure 5.6 : A nonlinear element and its describing function representation

Due to the fourth assumption above, one has a0 = 0. Furthermore, the third
assumption implies that we only need to consider the fundamental component wx(t),
namely

w(t) ~ wj(f) = aj cos(cof) + bx sin(a>0 = Msin(co? + (()) (5.8)

where

M{A,co) = J a ^ + 6,2 and <j>(A,co) =

Expression (5.8) indicates that the fundamental component corresponding to a
sinusoidal input is a sinusoid at the same frequency. In complex representation, this
sinusoid can be written as wj = Mei(m + ^ = (b{ +ja\) eJmt.

Similarly to the concept of frequency response function, which is the frequency-
domain ratio of the sinusoidal input and the sinusoidal output of a system, we define
the describing function of the nonlinear element to be the complex ratio of the
fundamental component of the nonlinear element by the input sinusoid, i.e.,

(pi \x i

/V(A,co)=^ifl^ ^e^=Ub{+iax) (5.9)

With a describing function representing the nonlinear component, the nonlinear
element, in the presence of sinusoidal input, can be treated as if it were a linear
element with a frequency response function /V(A,co), as shown in Figure 5.6. The
concept of a describing function can thus be regarded as an extension of the notion of
frequency response. For a linear dynamic system with frequency response function
H(jw), the describing function is independent of the input gain, as can be easily
shown. However, the describing function of a nonlinear element differs from the
frequency response function of a linear element in that it depends on the input
amplitude A. Therefore, representing the nonlinear element as in Figure 5.6 is also
called quasi-linearization.

Generally, the describing function depends on the frequency and amplitude of
the input signal. There are, however, a number of special cases. When the
nonlinearity is single-valued, the describing function iV(A,co) is real and independent
of the input frequency co. The realness of N is due to the fact that ax = 0, which is true
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because f[A sin(a>0] cos(cof), the integrand in the expression (5.7b) for <Z[, is an odd
function of cor, and the domain of integration is the symmetric interval [-71, TC]. The
frequency-independent nature is due to the fact that the integration of the single-
valued function f[A sin(cor)] sin(coO in expression (5.7c) is done for the variable cof,
which implies that co does not explicitly appear in the integration.

Although we have implicitly assumed the nonlinear element to be a scalar
nonlinear function, the definition of the describing function also applies to the case
when the nonlinear element contains dynamics {i.e., is described by differential
equations instead of a function). The derivation of describing functions for such
nonlinear elements is usually more complicated and may require experimental
evaluation.

5.1.5 Computing Describing Functions

A number of methods are available to determine the describing functions of nonlinear
elements in control systems, based on definition (5.9). We now briefly describe three
such methods: analytical calculation, experimental determination, and numerical
integration. Convenience and cost in each particular application determine which
method should be used. One thing to remember is that precision is not critical in
evaluating describing functions of nonlinear elements, because the describing function
method is itself an approximate method.

ANALYTICAL CALCULATION

When the nonlinear characteristics w =/(x) (where x is the input and w the output) of
the nonlinear element are described by an explicit function and the integration in (5.7)
can be easily carried out, then analytical evaluation of the describing function based
on (5.7) is desirable. The explicit function/(x) of the nonlinear element may be an
idealized representation of simple nonlinearities such as saturation and dead-zone, or it
may be the curve-fit of an input-output relationship for the element. However, for
nonlinear elements which evade convenient analytical expressions or contain
dynamics, the analytical technique is difficult.

NUMERICAL INTEGRATION

For nonlinearities whose input-output relationship w =f{x) is given by graphs or
tables, it is convenient to use numerical integration to evaluate the describing
functions. The idea is, of course, to approximate integrals in (5.7) by discrete sums
over small intervals. Various numerical integration schemes can be applied for this
purpose. It is obviously important that the numerical integration be easily
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implementable by computer programs. The result is a plot representing the describing
function, which can be used to predict limit cycles based on the method to be
developed in section 5.4.

EXPERIMENTAL EVALUATION

The experimental method is particularly suitable for complex nonlinearities and
dynamic nonlinearities. When a system nonlinearity can be isolated and excited with
sinusoidal inputs of known amplitude and frequency, experimental determination of
the describing function can be obtained by using a harmonic analyzer on the output of
the nonlinear element. This is quite similar to the experimental determination of
frequency response functions for linear elements. The difference here is that not only
the frequencies, but also the amplitudes of the input sinusoidal should be varied. The
results of the experiments are a set of curves on complex planes representing the
describing function N(A, co), instead of analytical expressions. Specialized
instruments are available which automatically compute the describing functions of
nonlinear elements based on the measurement of nonlinear element response to
harmonic excitation.

Let us illustrate on a simple nonlinearity how to evaluate describing functions
using the analytical technique.

Example 5.2: Describing function of a hardening spring

The characteristics of a hardening spring are given by

w = x + x3/2

with x being the input and w being the output. Given an input x(t) = A sin(co(), the output

w(t) — A sin(cof) + A3 sin3(cof)/2 can be expanded as a Fourier series, with the fundamental being

W|(;) = tf| cos cor + foj sin co/

Because w(t) is an odd function, one has a^ = 0, according to (5.7). The coefficient ftj is

b,=-\ [Asin((Ot) + A3 sin3(mt)/2] sin((ot) d((Ot) = A + - A 3

Therefore, the fundamental is

w, =(A + -A3)sin(cor)
8

and the describing function of this nonlinear component is

A
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= 1 +-A2

8

Note that due to the odd nature of this nonlinearity, the describing function is real, being a

function only of the amplitude of the sinusoidal input. •

5.2 Common Nonlinearities In Control Systems

In this section, we take a closer look at the nonlinearities found in control systems.
Consider the typical system block shown in Figure 5.7. It is composed of four parts: a
plant to be controlled, sensors for measurement, actuators for control action, and a
control law, usually implemented on a computer. Nonlinearities may occur in any part
of the system, and thus make it a nonlinear control system.

y(t)
controller actuators plant

Figure 5.7 : Block diagram of control systems

CONTINUOUS AND DISCONTINUOUS NONLINEARITIES

Nonlinearities can be classified as continuous and discontinuous. Because
discontinuous nonlinearities cannot be locally approximated by linear functions, they
are also called "hard" nonlinearities. Hard nonlinearities are commonly found in
control systems, both in small range operation and large range operation. Whether a
system in small range operation should be regarded as nonlinear or linear depends on
the magnitude of the hard nonlinearities and on the extent of their effects on the
system performance.

Because of the common occurence of hard nonlinearities, let us briefly discuss
the characteristics and effects of some important ones.

Saturation

When one increases the input to a physical device, the following phenomenon is often
observed: when the input is small, its increase leads to a corresponding (often
proportional) increase of output; but when the input reaches a certain level, its further

=«*_
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increase does produces little or no increase of the output. The output simply stays
around its maximum value. The device is said to be in saturation when this happens.
Simple examples are transistor amplifiers and magnetic amplifiers. A saturation
nonlinearity is usually caused by limits on component size, properties of materials,
and available power. A typical saturation nonlinearity is represented in Figure 5.8,
where the thick line is the real nonlinearity and the thin line is an idealized saturation
nonlinearity.

saturation
- * 1

Linear

y
w

/

1

/r
_j

1 x

1

1 saturation
1

Figure 5.8 : A saturation nonlinearity

Most actuators display saturation characteristics. For example, the output
torque of a two-phase servo motor cannot increase infinitely and tends to saturate, due
to the properties of the magnetic material. Similarly, valve-controlled hydraulic servo
motors are saturated by the maximum flow rate.

Saturation can have complicated effects on control system performance.
Roughly speaking, the occurence of saturation amounts to reducing the gain of the
device (e.g., the amplifier) as the input signals are increased. As a result, if a system is
unstable in its linear range, its divergent behavior may be suppressed into a self-
sustained oscillation, due to the inhibition created by the saturating component on the
system signals. On the other hand, in a linearly stable system, saturation tends to slow
down the response of the system, because it reduces the effective gain.

On-off nonlinearity

An extreme case of saturation is the on-off or relay nonlinearity. It occurs when the
linearity range is shrunken to zero and the slope in the linearity range becomes
vertical. Important examples of on-off nonlinearities include output torques of gas jets
for spacecraft control (as in example 2.5) and, of course, electrical relays. On-off
nonlinearities have effects similar to those of saturation nonlinearities. Furthermore
they can lead to "chattering" in physical systems due to their discontinuous nature.
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In many physical devices, the output is zero until the magnitude of the input exceeds a
certain value. Such an input-output relation is called a dead-zone. Consider for
instance a d.c. motor. In an idealistic model, we assume that any voltage applied to
the armature windings will cause the armature to rotate, with small voltage causing
small motion. In reality, due to the static friction at the motor shaft, rotation will
occur only if the torque provided by the motor is sufficiently large. Similarly, when
transmitting motion by connected mechanical components, dead zones result from
manufacturing clearances. Similar dead-zone phenomena occur in valve-controlled
pneumatic actuators and in hydraulic components.

-8

dead zone
Figure 5.9 : A dead-zone nonlinearity

Dead-zones can have a number of possible effects on control systems. Their
most common effect is to decrease static output accuracy. They may also lead to limit
cycles or system instability because of the lack of response in the dead zone. In some
cases, however, they may actually stabilize a system or suppress self-oscillations. For
example, if a dead-zone is incorporated into an ideal relay, it may lead to the
avoidance of the oscillation at the contact point of the relay, thus eliminating sparks
and reducing wear at the contact point. In chapter 8, we describe a dead-zone
technique to improve the robustness of adaptive control systems with respect to
measurement noise.

Backlash and hysteresis

Backlash often occurs in transmission systems. It is caused by the small gaps which
exist in transmission mechanisms. In gear trains, there always exist small gaps
between a pair of mating gears, due to the unavoidable errors in manufacturing and
assembly. Figure 5.10 illustrates a typical situation. As a result of the gaps, when the
driving gear rotates a smaller angle than the gap b, the driven gear does not move at
all, which corresponds to the dead-zone (OA segment in Figure 5.10); after contact
has been established between the two gears, the driven gear follows the rotation of the
driving gear in a linear fashion (AB segment). When the driving gear rotates in the
reverse direction by a distance of 2b, the driven gear again does not move,
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corresponding to the BC segment in Figure 5.10. After the contact between the two
gears is re-established, the driven gear follows the rotation of the driving gear in the
reverse direction (CD segment). Therefore, if the driving gear is in periodic motion,
the driven gear will move in the fashion represented by the closed path EBCD. Note
that the height of B, C, D, E in this figure depends on the amplitude of the input
sinusoidal.

driven ;
gear I

, driving
gear

output
angle

O A

b i n p u t

angle

Figure 5.10 : A backlash nonlinearity

A critical feature of backlash is its multi-valued nature. Corresponding to each
input, two output values are possible. Which one of the two occur depends on the
history of the input. We remark that a similar multi-valued nonlinearity is hysteresis,
which is frequently observed in relay components.

Multi-valued nonlinearities like backlash and hysteresis usually lead to energy
storage in the system. Energy storage is a frequent cause of instability and self-
sustained oscillation.

5.3 Describing Functions of Common Nonlinearities

In this section, we shall compute the describing functions for a few common
nonlinearities. This will not only allow us to familiarize ourselves with the frequency
domain properties of these common nonlinearities, but also will provide further
examples of how to derive describing functions for nonlinear elements.

SATURATION

The input-output relationship for a saturation nonlinearity is plotted in Figure 5.11,
with a and k denoting the range and slope of the linearity. Since this nonlinearity is
single-valued, we expect the describing function to be a real function of the input

i
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saturation

sinusoidal
input

w(t)
unsaturated
output

saturated
output

CO/

Figure 5.11 : Saturation nonlinearity and the corresponding input-output relationship

amplitude.

Consider the input x(t) = Asin(otf)- If A < a, then the input remains in the linear
range, and therefore, the output is w(t) = kAsin(a)f). Hence, the describing function is
simply a constant k.

Now consider the case A > a. The input and the output functions are plotted in
Figure 5.11. The output is seen to be symmetric over the four quarters of a period. In
the first quarter, it can be expressed as

w(t) =
kA sin(cor)

ka <OH<7l/2

where y = sin ' (a/A). The odd nature of w(t) implies that a\=Q and the symmetry



174 Describing Function Analysis

over the four quarters of a period implies that

4 rKl2

b 1 = - I vv(f) sin(G)0 d(& t)

4 r Y

Chap. 5

4 rY ~ A ft/2

= - kAsinz{(Ot)d((at)+-\ kasm(<£>t) d(($t)

2kA

(5.10)

Therefore, the describing function is

N(A)
b\ 2k f . _i a a \, a2 ,

= = [sin » _ + _ 1 - — ]
A A-

(5.11)

The normalized describing function (N(A)/k) is plotted in Figure 5.12 as a
function of A/a . One can observe three features for this describing function:

1. N(A) = kif the input amplitude is in the linearity range

2. N(A) decreases as the input amplitude increases

3. there is no phase shift

The first feature is obvious, because for small signals the saturation is not displayed.
The second is intuitively reasonable, since saturation amounts to reduce the ratio of
the output to input. The third is also understandable because saturation does not cause
the delay of the response to input.

As a special case, one can obtain the describing function for the relay-type (on-
off) nonlinearity shown in Figure 5.13. This case corresponds to shrinking the linearity
range in the saturation function to zero, i.e., a —> 0, k —> °°, but ka = M. Though b\
can be obtained from (5.10) by taking the limit, it is more easily obtained directly as

4 i.n/2 4
b, = _ I Msin(cof) d((Ot) = - M

n Jo ft

Therefore, the describing function of the relay nonlinearity is

N{A)=™L (5.12)

The normalized describing function (N/M) is plotted in Figure 5.13 as a function of

i
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Figure 5.12 : Describing function of the
saturation nonlinearity

input amplitude. Although the describing function again has no phase shift, the flat
segment seen in Figure 5.12 is missing in this plot, due to the completely nonlinear
nature of the relay. The asymptic properties of the describing function curve in Figure
5.13 are particularly interesting. When the input is infinitely small, the describing
function is infinitely large. When the input is infinitely large, the describing function
is infinitely small. One can gain an intuitive understanding of these properties by
considering the ratio of the output to input for the on-off nonlinearity.
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Figure 5.13 : Relay nonlinearity and its describing function

DEAD-ZONE

Consider the dead-zone characteristics shown in Figure 5.9, with the dead-zone width
being 25 and its slope k. The response corresponding to a sinusoidal input
x(t) = Asin(cor) into a dead-zone of width 28 and slope k, with A >5, is plotted in
Figure 5.14. Since the characteristics is an odd function, al = 0. The response is also
seen to be symmetric over the four quarters of a period. In one quarter of a period,
i.e., when 0 < (at < n/2, one has
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Figure 5.14 : Input and output functions for a dead-zone nonlinearity

0 O<co/<y
£(Asin(a>O-S) y<a>t< n/2

where y = sin ' (8/A). The coefficient bj can be computed as follows

4 ,rc/2 4 .71/2
b\ = - w(t) sin(au) d{u>t) = - i(Asin(co/) - 8) sin(cor) d((Ot)

KJ0 KJy

(
it 2

(5.13) |

This leads to

A A

This describing function /V(A) is a /-ea/ function and, therefore, there is no phase shift
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(reflecting the absence of time-delay). The normalized describing function is plotted in
Figure 5.15. It is seen that N(A)/k is zero when A/8 < 1, and increases up to 1 with
A/8. This increase indicates that the effect of the dead-zone gradually diminishes as
the amplitude of the input signal is increased, consistently with intuition.

Figure 5.15 : Describing function of the
dead-zone nonlinearity

BACKLASH

The evaluation of the describing functions for backlash nonlinearity is more tedious.
Figure 5.16 shows a backlash nonlinearity, with slope k and width 2b. If the input
amplitude is smaller than b, there is no output. In the following, let us consider the
input being x(t) = A sin(tt)f), A > b . The output w(t) of the nonlinearity is as shown in
the figure. In one cycle, the function w(t) can be represented as

w(t) = {A -b)k

w(t) = {A sin(co t) + b)k

w(t) = ~(A -b)k

w(t) = (/4sin(cor) -b)k

where y = s in ' 1 (1 - 2b/A).

n-

3TC

T

cor < 7t-y

<a>t<2n

~~2~

<oit<2n-y

<5n
2

Unlike the previous nonlinearities, the function w{t) here is neither odd nor even.
Therefore, «j and b\ are both nonzero. Using (5.7b) and (5.7c), we find through some
tedious integrations that
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( 0 /

Figure 5.16 : Input and output functions for a backlash nonlinearity

4kb ,b , ,

1 jr. 2 A A i A

Therefore, the describing function of the backlash is given by

(5.14a)

(5.14b)

The amplitude of the describing function for backlash is plotted in Figure 5.17.

We note a few interesting points :
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0 0.2 0.4 0.6 0.8 1.0 JL
A

Figure 5.17 : Amplitude of describing
function for backlash

l.\N(A)\ = 0 ifA=b.

2. \N{A)\ increases, when b/A decreases.

3. |W(/4)|-> 1 as b/A-^ 0.

The phase angle of the describing function is plotted in Figure 5.18. Note that a phase
lag (up to 90°) is introduced, unlike the previous nonlinearities. This phase lag is the
reflection of the time delay of the backlash, which is due to the gap b. Of course, a
larger b leads to a larger phase lag, which may create stability problems in feedback
control systems.

IK

o

-20

-40

-60

-90 0 0.2 0.4 0.6 0.8 1.0 b_
A

Figure 5.18 : Phase angle of describing
function for backlash (degree)

5.4 Describing Function Analysis of Nonlinear Systems

For a nonlinear system containing a nonlinear element, we now know how to obtain a
decribing function for the nonlinear element. The next step is to formalize the
procedure in subsection 5.1.1 for the prediction of limit cycles, based on the
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describing function representation of the nonlinearity. The basic approach to achieve
this is to apply an extended version of the famous Nyquist criterion in linear control to
the equivalent system. Let us begin with a short review of the Nyquist criterion and
its extension.

5.4.1 The Nyquist Criterion and Its Extension

Consider the linear system of Figure 5.19. The characteristic equation of this system is

8(p) = 1 + G(p) H(p) = 0

Note that 8(p), often called the loop transfer function, is a rational function of p, with
its zeros being the poles of the closed-loop system, and its poles being the poles of the
open-loop transfer function G(p) H(p). Let us rewrite the characteristic equation as

G(p) H(p) = -l

G(p)

H(p)
Figure 5.19 : Closed-loop linear system

Based on this equation, the famous Nyquist criterion can be derived straightforwardly
from the Cauchy theorem in complex analysis. The criterion can be summarized
(assuming that G(p) H(p) has no poles or zeros on the yco axis) in the following
procedure (Figure 5.20):

1. draw, in the p plane, a so-called Nyquist path enclosing the right-half
plane

2. map this path into another complex plane through G(p)H{p)

3. determine /V, the number of clockwise encirclements of the plot of
G{p)H{p) around the point (- 1,0)

4. compute Z, the number of zeros of the loop transfer function 5(p) in the
right-half p plane, by

Z = N + P , where P is the number of unstable poles of 5(p)

Then the value of Z is the number of unstable poles of the closed-loop system.

J
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p plane

+ 00

G(p)H(p)

Nyquist path

-co
co-> +co

Figure 5.20 : The Nyquist criterion

A simple formal extension of the Nyquist criterion can be made to the case
when a constant gain K (possibly a complex number) is included in the forward path
in Figure 5.21. This modification will be useful in interpreting the stability analysis of
limit cycles using the describing function method. The loop transfer function becomes

8(p)=l+KG(p)H(p)

with the corresponding characteristic equation

G(p)H(p) = -

The same arguments as used in the derivation of Nyquist criterion suggest the same
procedure for determining unstable closed-loop poles, with the minor difference that
now Z represents the number of clockwise encirclements of the G(p) H(p) plot around
the point - l/K. Figure 5.21 shows the corresponding extended Nyquist plot.

Im

G(p) H(p)
0

— • K

H(p)

G(p) —

Figure 5.21 : Extension of the Nyquist criterion
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5.4.2 Existence of Limit Cycles

Let us now assume that there exists a self-sustained oscillation of amplitude A and
frequency co in the system of Figure 5.22. Then the variables in the loop must satisfy
the following relations:

x = -y

w = N(A,(o)x

(5.15)

(5.16)

Therefore, we have y = G(j(£>)N(A,(i))(-y). Because y * 0, this implies

GO'co) N(A,(0) + 1 = 0

which can be written as

G 0 " « » = - 1
N(A,(o)

Therefore, the amplitude A and frequency CO of the limit cycles in the system must
satisfy (5.16). If the above equation has no solutions, then the nonlinear system has no
limit cycles.

Expression (5.16) represents two nonlinear equations (the real part and
imaginary part each give one equation) in the two variables A and CO. There are
usually a finite number of solutions. It is generally very difficult to solve these
equations by analytical methods, particularly for high-order systems, and therefore, a
graphical approach is usually taken. The idea is to plot both sides of (5.16) in the
complex plane and find the intersection points of the two curves.

Describing
Function Linear Element

r(t) = 0 x(t)

r *
N(A, CO)

w(t)
WCO)

y(t)

Figure 5.22 : A nonlinear system
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FREQUENCY-INDEPENDENT DESCRIBING FUNCTION

First, we consider the simpler case when the describing function N being a function of
the gain A only, i.e., N(A, co) = N(A). This includes all single-valued nonlinearities
and some important double-valued nonlinearities such as backlash. The equality
becomes

1
N(A)

(5.17)

We can plot both the frequency response function G(j(o) (varying co) and the negative
inverse describing function (- l/N(A)) (varying A) in the complex plane, as in Figure
5.23. If the two curves intersect, then there exist limit cycles, and the values of A and
co corresponding to the intersection point are the solutions of Equation (5.17). If the
curves intersect n times, then the system has n possible limit cycles. Which one is
actually reached depends on the initial conditions. In Figure 5.23, the two curves
intersect at one point K. This indicates that there is one limit cycle in the system. The
amplitude of the limit cycle is A^, the value of A corresponding to the point K on the
- l/N(A) curve. The frequency of the limit cycle is cô  , the value of co corresponding
to the point K on the G(jco) curve.

Figure 5.23 : Detection of limit cycles

Note that for single-valued nonlinearities, N is real and therefore the plot of
- l/N always lies on the real axis. It is also useful to point out that, as we shall
discuss later, the above procedure only gives a prediction of the existence of limit
cycles. The validity and accuracy of this prediction should be confirmed by computer
simulations.

We already saw in section 5.1.1 an example of the prediction of limit cycles, for
the Van der Pol equation.
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FREQUENCY-DEPENDENT DESCRIBING FUNCTION

For the general case, where the describing function depends on both input amplitude
and frequency (N = N(A, co)), the method can be applied, but with more complexity.
Now the right-hand side of (5.15), - l/N(A, co) , corresponds to a family of curves on
the complex plane with A as the running parameter and co fixed for each curve, as
shown in Figure 5.24. There are generally an infinite number of intersection points
between the G(y'co) curve and the - 1/N(A, co) curves. Only the intersection points with
matched co indicate limit cycles.

Im

Figure 5.24 : Limit cycle detection for
frequency-dependent describing functions

To avoid the complexity of matching frequencies at intersection points, it may
be advantageous to consider the graphical solution of (5.16) directly, based on the
plots of G(ja>)N(A, co). With A fixed and co varying from 0 to °°, we obtain a curve
representing G(J(o)N{A,(o). Different values of A correspond to a family of curves, as
shown in Figure 5.25. A curve passing through the point (- 1,0) in the complex plane
indicates the existence of a limit cycle, with the value of A for the curve being the
amplitude of the limit cycle, and the value of co at the point (- 1,0) being the
frequency of the limit cycle. While this technique is much more straightforward than
the previous one, it requires repetitive computation of the G(/co) in generating the
family of curves, which may be handled easily by computer.

5.4.3 Stability of Limit Cycles

As pointed out in chapter 2, limit cycles can be stable or unstable. In the above, we
have discussed how to detect the existence of limit cycles. Let us now discuss how to
determine the stability of a limit cycle, based on the extended Nyquist criterion in
section 5.4.1.

Consider the plots of frequency response and inverse describing function in
Figure 5.26. There are two intersection points in the figure, predicting that the system
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G(j(o)N(A,a>)
Figure 5.25
graphically

Solving equation (5.15)

has two limit cycles. Note that the value of A corresponding to point L[ is smaller
than the value of A corresponding to L2. For simplicity of discussion, we assume that
the linear transfer function G(p) has no unstable poles.

Im

Figure 5.26 : Limit Cycle Stability

Let us first discuss the stability of the limit cycle at point Lj. Assume that the
system initially operates at point Lj, with the limit cycle amplitude being A[, and its
frequency being 00|. Due to a slight disturbance, the amplitude of the input to the
nonlinear element is slightly increased, and the system operating point is moved from
Lj to L | . Since the new point L] is encircled by the curve of G(ju>), according to the
extended Nyquist criterion mentioned in section 5.4.1, the system at this operating
point is unstable, and the amplitudes of the system signals will increase. Therefore, the
operating point will continue to move along the curve - ]/N(A ) toward the other limit
cycle point L2. On the other hand, if the system is disturbed so that the amplitude A as
decreased, with the operating point moved to the point Lj", then A will continue to
decrease and the operating point moving away from Ll in the other direction. This is
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because L{ is not encircled by the curve G(yco) and thus the extended Nyquist plot
asserts the stability of the system. The above discussion indicates that a slight
disturbance can destroy the oscillation at point Lj and, therefore, that this limit cycle is
unstable. A similar analysis for the limit cycle at point L2 indicates that that limit
cycle is stable.

Summarizing the above discussion and the result in the previous subsection, we
obtain a criterion for existence and stability of limit cycles:

Limit Cycle Criterion: Each intersection point of the curve G(j(o) and the curve
- l/N(A) corresponds to a limit cycle. If points near the intersection and along the
increasing-A side of the curve - 1 /N(A) are not encircled by the curve G(jai) , then
the corresponding limit cycle is stable. Otherwise, the limit cycle is unstable.

5.4.4 Reliability of Describing Function Analysis

Empirical evidence over the last three decades, and later theoretical justification,
indicate that the describing function method can effectively solve a large number of
practical control problems involving limit cycles. However, due to the approximate
nature of the technique, it is not surprising that the analysis results are sometimes not
very accurate. Three kinds of inaccuracies are possible:

1. The amplitude and frequency of the predicted limit cycle are not
accurate

2. A predicted limit cycle does not actually exist

3. An existing limit cycle is not predicted

The first kind of inaccuracy is quite common. Generally, the predicted
amplitude and frequency of a limit cycle always deviate somewhat from the true
values. How much the predicted values differ from the true values depends on how
well the nonlinear system satisfies the assumptions of the describing function method.
In order to obtain accurate values of the predicted limit cycles, simulation of the
nonlinear system is necessary.

The occurrence of the other two kinds of inaccuracy is less frequent but has
more serious consequences. Usually, their occurrence can be detected by examining
the linear element frequency response and the relative positions of the G plot and
- l/.V plot.

\ 'iolation of filtering hypothesis: The validity of the describing function method relies
on the filtering hypothesis defined by (5.5). For some linear elements, this hypothesis
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is not satisfied and errors may result in the describing function analysis. Indeed, a
number of failed cases of describing function analysis occur in systems whose linear
element has resonant peaks in its frequency response G(/a>).

Graphical Conditions: If the G(yco) locus is tangent or almost tangent to the - l/N
locus, then the conclusions from a describing function analysis might be erroneous.
Such an example is shown in Figure 5.27(a). This is because the effects of neglected
higher harmonics or system model uncertainty may cause the change of the
intersection situations, particularly when filtering in the linear element is weak. As a
result, the second and third types of errors listed above may occur. A classic case of
this problem involves a second-order servo with backlash studied by Nychols. While
describing function analysis predicts two limit cycles (a stable one at high frequency
and an unstable one at low frequency), it can be shown that the low-frequency
unstable limit cycle does not exist.

Im Im

- 1 IN(A)

( a ) ( b )

Figure 5.27 : Reliability of limit cycle prediction

Conversely, if the - l/N locus intersects the G locus almost perpendicularly,
then the results of the describing function are usually good. An example of this
situation is shown in Figure 5.27(b).

5.5 Summary

The describing function method is an extension of the frequency response method of
linear control. It can be used to approximately analyze and predict the behavior of
important classes of nonlinear systems, including systems with hard nonlinearities.
The desirable properties it inherits from the frequency response method, such as its
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graphical nature and the physically intuitive insights it can provide, make it an
important tool for practicing engineers. Applications of the describing function
method to the prediction of limit cycles were detailed. Other applications, such as
predicting subharmonics, jump phenomena, and responses to external sinusoidal
inputs, can be found in the literature.

5.6 Notes and References

An extensive and clear presentation of the describing function method can be found in [Gelb and

VanderVelde, 1968]. A more recent treatment is contained in [Hedrick, el al., 1982], which also

discusses specific applications to nonlinear physical systems. The describing function method was

developed and successfully used well before its mathematical justification was completely

formalized [Bergen and Franks, 1971]. Figures 5.14 and 5.16 are adapted from [Shinners, 1978]. The

Van der Pol oscillator example is adapted from [Hsu and Meyer, 1968].

5.7 Exercises

5.1 Determine whether the system in Figure 5.28 exhibits a self-sustained oscillation

cycle). If so, determine the stability, frequency, and amplitude of the oscillation.

limit

H)
+1'

-1
p(p +

K

>)(p + 2)

Figure 5.28 : A nonlinear system containing a relay

5.2 Determine whether the system in Figure 5.29 exhibits a self-sustained oscillation. If so,

determine the stability, frequency, and amplitude of the oscillation.

5.3 Consider the nonlinear system of Figure 5.30. Determine the largest K which preserves the

stability of the system. If K = 2Kmax, find the amplitude and frequency of the self-sustained

oscillation.

5.4 Consider the system of Figure 5.31, which is composed of a high-pass filter, a saturation

function, and the inverse low-pass filter. Show that the system can be viewed as a nonlinear low-

A
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Y = 0

p(p

Figure 5.29 : A nonlinear system

containing a dead-zone

pass filter, which attenuates high-frequency inputs without introducing a phase lag.

5.5 This exercise is based on a result of [Tsypkin, 1956].

Consider a nonlinear system whose output w(t) is related to the input u(t) by an odd function,

of the form

w(t) = F(u(t)) = - F( - u(t))

Derive the following very simple approximate formula for the describing function N(A)

N{A) = JL [ F(A) + F(AI2) ]

To this effect, you may want to use the fact that

(5.18)

fix) -dx = -
6

where the remainder R verifies R = / 6 © / ( 2 ^ 6 ! ) for some £ € ( - 1 , 1 ) . Show that

approximation (5.18) is quite precise (how precise?).

o
20

20

K

p(l+0.1p)(l+0.02p)

Figure 5.30 : A nonlinear system containing a saturation

* ^
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x2p+l
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Figure 5.31 : A nonlinear low-pass filter

Invert (5.18) so as to obtain for the input-output relation a solution of the form

5.6 In this exercise, adapted form [Phillips and Harbor, 1988], let us consider the system of Figure 31

5.32, which is typical of the dynamics of electronic oscillators used in laboratories, with

G(p) = -5p

+25

Use describing function analysis to predict whether the system exhibits a limit cycle, depending on jj

the value of the saturation level k. In such cases, determine the limit cycle's frequency and *

amplitude. %

Saturation Linear Element

w(t)
G(p)

y(')

Figure 5.32 : Dynamics of an electronic oscillator

Interpret intuitively, by assuming that the system is started at some small initial state, and

noticing that y{t) can stay neither at small values (because of instability) nor at saturation values (by

applying the final value theorem of linear control).


