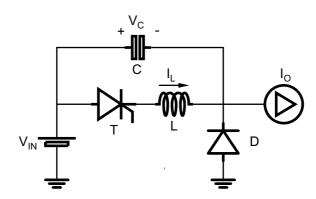
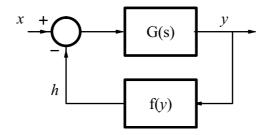

Universidad Nacional de Mar del Plata Facultad de Ingeniería Departamento de Electrónica

Sistemas de Control(403) Primer Parcial - 29 de Septiembre de 2005


Apellido y Nombres:	
Matricula N°:	

1. Para el circuito de la figura, sintetice las impedancias Z_1 y Z_2 para obtener una transferencia $\frac{V_O}{V_{IN}}=1$, máximo ancho de banda y margen de fase mayor o igual a $\frac{\pi}{4}$. La transferencia del operacional $A(\omega)$ esta dada por:


$$A(\omega) = \frac{10^6}{(1 + \frac{s}{100})(1 + \frac{s}{10^4})}$$

2. En el siguiente circuito el tiristor T es disparado con una frecuencia $\omega_T = \frac{1}{4\pi\sqrt{LC}}$. Graficar el plano de fase tomando como variables $i_L\sqrt{\frac{L}{C}}$ vs. V_C . Para obtener las condiciones iniciales suponer que no existen disparos en el tiristor para t < 0.

3. Considere el siguiente sistema realimentado formado por una transferencia lineal G(s) y un bloque alineal expresado con la función f(y).

La función descriptiva N(A) de la función alineal de simetría impar f(y) tiene valores reales y satisface

$$0 < N(A) < 1, \quad \forall \quad A > 0$$

donde A es la amplitud de la señal y.

Para cada una de las transferencias G(s) dadas determine las condiciones sobre \mathbf{a} , \mathbf{b} y \mathbf{n} para que el método de la función descriptiva 'sugiera' un ciclo límite. Justifique su respuesta

(a)
$$G(s) = \frac{b}{(s+a)} \quad \forall \quad a, b > 0$$

(b)
$$G(s) = \frac{b}{s(s+a)} \quad \forall \quad a, b > 0$$

(c)
$$G(s) = \frac{a^3}{(s^3 + 3 a s^2 + 3 a^2 s + a^3)}$$

(d)
$$G(s) = \frac{1}{(s^3 + 3 a s^2 + 3 a^2 s + a^3)}$$

(e)
$$G(s) = \frac{1}{(1 + \frac{s}{a})^n} \quad \forall \quad n \ge 1$$