
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Physica A 387 (2008) 3373–3383
www.elsevier.com/locate/physa

Randomizing nonlinear maps via symbolic dynamics
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Abstract

Pseudo Random Number Generators (PRNG) have attracted intense attention due to their obvious importance for many branches
of science and technology. A randomizing technique is a procedure designed to improve the PRNG randomness degree according
the specific requirements. It is obviously important to quantify its effectiveness. In order to classify randomizing techniques
based on a symbolic dynamics’ approach, we advance a novel, physically motivated representation based on the statistical
properties of chaotic systems. Recourse is made to a plane that has as coordinates (i) the Shannon entropy and (ii) a form of the
statistical complexity measure. Each statistical quantifier incorporates a different probability distribution function, generating thus
a representation that (i) sheds insight into just how each randomizing technique operates and also (ii) quantifies its effectiveness.
Using the Logistic Map and the Three Way Bernoulli Map as typical examples of chaotic dynamics it is shown that our methodology
allows for choosing the more convenient randomizing technique in each instance. Comparison with measures of complexity based
on diagonal lines on the recurrence plots [N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438 (2007) 237] support the
main conclusions of this paper.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In spite of the fact that the existence (or not) of truly random number generators (RNG) remains an open question,
Pseudo Random Number Generators (PRNG’s) are widely used in science and technology. It is clear that a complex
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dynamics does not necessarily implies the workings of a complicated model, if nonlinearities are present. Low-
dimensional, chaotic dynamic systems constitute paramount examples of such an assertion and have been employed as
Pseudo Random Number Generators because they are able to generate stochastic-like signals out of underlying simple
models that are easy to implement via appropriate software or hardware. Usually, a suitable manipulation of the time-
series that these models generate is required to improve their statistical properties. Here we will be interested precisely
in these manipulations or randomizing techniques, that is, procedures that increase the quality of a PRNG. Obviously,
we want to be in a position to quantitatively assess a “degree of quality” of a given randomizing techniques, an issue
that will be the leitmotif of the present effort, in the wake of many tests that have been proposed in the literature to
characterize the Pseudo Random Number Generator’s quality [1].

Our approach takes advantage of the statistical properties of chaotic systems, a theme that has been addressed
by several authors. Excellent reviews are found in the works of Beck–Schögl [2], Lasota–Mackey [3], and Setti
et al. [4]. We will show that Pseudo Random Number Generators based on very simple chaotic systems may be
greatly improved by means of two types of symbolic dynamics randomizing techniques, namely, Discretization [5–
7] and Skipping [4].

Note that symbolic dynamics are usually regarded as coarse-grain descriptions of a “real” dynamic system’s
continuous time-evolution [8,9]. Such a viewpoint stimulates research focused on generating suitable partitions of
the relevant state space, thus producing symbolic dynamics descriptions without information loss. Contrariwise, in
this effort we look at symbolic dynamics as a tool for randomizing a chaotic Pseudo Random Number Generator.
That is, starting from a chaotic time series, our goal is to get a “symbolic” timeseries with more convenient statistical
properties than those of the original one.

The expressions “more convenient”, or “better” statistical properties are to be understood within an Information
Theory framework. We employ a normalized-to-unity version of the Shannon entropy [10] to be denoted as HS . One
wishes for it to be maximal (i.e. equal to unity) if randomness is the desideratum. However, recourse to just HS does
not guarantee the random nature of a time series. Our proposal is to combine the HS-measure with another quantifier,
called a statistical complexity measure (SCM) whose original functional product form was proposed by Lopez-Ruiz,
Mancini and Calbet in the seminal paper [11], and baptized as CL MC .

Of course there exist many other complexity measures. For a comparison amongst them see the paper by
Wackerbauer et al. [12]. Note that here we used a modified version of the SCM designed by Martin, Plastino and
Rosso that overcomes some troublesome characteristics of the original measure (see, for example, Refs. [13–16]).

The intensive statistical complexity version (for short CMPR) has been shown to be a convenient tool for different
purposes [17–23]. We are, of course, taking advantage of an important statistical complexity measure property: it
vanishes for completely random signals [11,15,16], thus guaranteeing that no “hidden” structures (or correlations)
exist. In Refs. [11,24] a representation in a plane defined by the two quantifiers H × C is proposed, where the H -axis
is considered a time coordinate of a dynamic system. In a similar way we use here HS × CMPR in which the ideal
situation is represented by the (1, 0) point, will allow us to establish the main result of this endeavour: Discretization
and Skipping yield markedly different trajectories towards the ideal point.

To exhibit that effect we will analyse chaotic time-series generated by two well-known maps: the Logistic Map
(LOG) and the Three Way Bernoulli Map (TWBM). They have been selected, among other possibilities, because they
are representative of two different classes of systems:

• The LOG-map represents continuous systems that may be approached with the Lorenz procedure via a 1D-map. A
non uniform natural invariant density is an important feature in this instance [2].

• On the other hand, TWBM is representative of many piecewise linear maps as, for example, the Four Way Tailed
Shift Map, the Skew Tent Map, the Three Way Tailed Shift Map, etc., that share a uniform natural invariant density
but have different mixing properties [2].

The present work makes two main contributions (a) two randomizing techniques that may be widely used to
randomize chaotic time series and (b) a representation plane where the effectiveness of each one is clearly exhibited.
The paper is organized as follows: we describe in Section 2 the symbolic dynamics’ randomization processes
(discretization and skipping). As a complement we revisit in Appendix the use of the Perron-Frobenius operator
in connection with chaotic maps together with two central concepts for our present purposes, i.e. those of (i) invariant
probability measure and (ii) mixing. Section 3 provides details concerning the evaluation of the two statistical
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Table 1
Illustrating the Discretization procedure

SIN (R) S1 (N) S2 (binary) S3 — MSB 4-dim embedding S4 (N) SOUT (R)

0.010559404 0 0000
0.041791613 0 0000
0.160180296 2 0010
0.538090276 8 1000 0001 1 0.066666667

0.994196523 14 1110
0.023079185 0 0000
0.090186145 1 0001
0.328210418 4 0100 1000 8 0.533333333

0.881953358 13 1101
0.416446528 6 0110
0.972075269 14 1110
0.10857976 1 0001 1010 10 0.666666667

0.387160782 5 0101
0.949069244 14 1110
0.193347257 2 0010
0.62385638 9 1001 0101 5 0.333333333

Table 2
Illustrating the Skipping procedure

SIN SOUT ≡ f d

(R) d = 2 d = 3 d = 4 d = 5 d = 6

0.010559404
0.041791613 0.041791613
0.160180296 0.160180296
0.538090276 0.538090276 0.538090276
0.994196523 0.994196523
0.023079185 0.023079185 0.023079185 0.023079185
0.090186145
0.328210418 0.328210418 0.328210418
0.881953358 0.881953358
0.416446528 0.416446528 0.416446528
0.972075269
0.10857976 0.10857976 0.10857976 0.10857976 0.10857976
0.387160782
0.949069244 0.949069244
0.193347257 0.193347257 0.193347257
0.62385638 0.62385638 0.62385638

quantifiers that we employ while results and conclusions are presented in Section 4. A brief summary is provided
in Section 5.

2. Symbolic dynamics-based randomization processes

Let f be a chaotic map. Starting from a randomly chosen initial condition, the map is iterated generating the chaotic
timeseries (CHTS) SIN = {x0, x1, . . .}. This CHTS is to be regarded as the input for the randomizing process (see
Tables 1 and 2). Let us assume that xi is a floating-point number (in the IEEE normalized representation). Without
loss of generality, we consider values restricted to the interval [0, 1]. As previously stated, the central idea here is that
of employing two kinds of well-known symbolic dynamics randomization processes (Discretization and Skipping).
After several steps, the output of each of these processes will be a new timeseries (STS) SOUT obtained as described
below (see Tables 1 and 2).
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• Discretization: The discretization process is carried out according to the following steps:
(1) Each value of SIN is first discretized using N -bits. Accordingly, the continuous (real) interval [0, 1] is

mapped onto the discrete interval [0, 2N
− 1]. The new series S1 ensues. In Table 1 the case N = 4 is

illustrated (see columns S1, S2, etc.). Remark that this first step is unavoidable when the chaotic system is
hardware-implemented, using for example, field-programmable gate arrays. After this first step the symbolic
representation space contains 2N different symbols. Note that in some pathological cases (the Tent map, for
instance) this procedure renders a series for which the chaotic behaviour completely disappears. In these cases
several approaches can be invoked so as to avoid this problem [25–27].

(2) Translate now the preceding time-series S1 into a new S2-one (binary format). In column S2 the most
significative digit (MSB) is displayed in bold typeface, as it is the one to be considered in the following
conversion steps.

(3) Regard now N consecutive S2-members as “coordinates” in an N -dimensional embedding space E . “Points” in
E are represented by binary numbers. We now form a new timeseries S3 by retaining only the most significative
digit (MSB) of each coordinate of the embedding space. Note that this MSB-representation is equivalent
to the commonly employed symbolic-dynamics process that consists of splitting the interval [0, 1] into two
subintervals A = [0, 0.5) and B = [0.5, 1], assigning a “0” if xi ∈ A or a “1” if xi ∈ B.

(4) Reconvert S3 into N -bits natural numbers S4 in the interval [0, 2N
− 1].

(5) Normalize S4 (dividing each member by 2N
− 1).

(6) The ensuing series is the output one SOUT, again a series of floating-point numbers in the interval [0, 1].
Alternatively, the least significative digit (LSB) may be employed above, instead of the MSB one. The

concomitant procedure is, of course, identical to the one summarized above, but now each symbol (number) in
S3 represents the parity sequence of N consecutive members of the original CHTS. Note that information is lost
by discretization because many points of the N -dimensional embedding space will share the same symbol (SOUT)
in the final timeseries.

• Skipping: This is a quite different approach (see Table 2). We deal with a two-stage process:
(1) Partition the original CHTS SIN into groups of length d, without superposition, regarding each group as a point

in a d-dimensional embedding space E . This entails that in the embedding space each point represents now a
d-length vector of IEEE-floating-point numbers.

(2) Attach to each point in E a symbol consisting of only one coordinate (for example, the d-th one), generating
thereby the output timeseries (STS) SOUT of Table 2.

Note that d − 1 values of SIN are “skipped” to get the STS SOUT which originates the name Skipping for
this technique. In other words, we employ, instead of the original map f , its d-times iterated one f d . This
randomization technique is routinely (and successfully) used with piecewise linear maps in many applications [4].
In Table 2, an example with different values of d is displayed.

3. Normalized entropy and statistical complexity measures

As explained in Section 1, the second contribution of the present endeavour is a “two-probabilities” representation
plane (see below), that uses HS and CMPR = Q · H as coordinates. In Ref. [15] the disequilibrium Q was built using
Wootters’ statistical distance and taking H as a normalized Shannon entropy (see Ref. [15] and references therein
for details). The ensuing SCM is neither an intensive nor extensive quantity in the thermodynamic sense, although it
yields useful results. A natural SCM improvement is to give it an intensive character, as achieved in Ref. [16]. The
concomitant SCM version is (i) able to grasp essential details of the dynamics, (ii) an intensive quantity and, (iii)
capable of discerning among different degrees of periodicity and chaos [20]. The ensuing measure, to be referred to
as the intensive statistical complexity, is a functional CMPR[P] that characterizes the probability distribution function
P associated with the time series of length M , generated by the dynamic system under study. It writes

CMPR[P] = Q J [P, Pe] · HS[P], (1)

where

HS[P] = S[P]/Smax =

[
−

N∑
j=1

p j ln(p j )

] /
Smax, (2)
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with Smax = S[Pe] = ln N , (0 ≤ HS ≤ 1), while N represent the total number of states of the system in phase space.
We denote by Pe = {1/N , . . . , 1/N } the uniform distribution, while S stands for Shannon’s entropy. Following the
nomenclature introduced in Ref. [11] Q J is the above referred to “disequilibrium”, defined in terms of the extensive
Jensen-Shannon divergence [16] (it induces a squared metric, in contrast to the Kullback–Leiber divergence) and
writes

Q J [P, Pe] = Q0 · {S[(P + Pe)/2] − S[P]/2 − S[Pe]/2}, (3)

with Q0 a normalization constant (0 ≤ Q J ≤ 1) that reads

Q0 = −2
{(

N + 1
N

)
ln(N + 1) − 2 ln(2N ) + ln N

}−1

. (4)

We see that the disequilibrium Q J is an intensive quantity that reflects on the system’s “architecture”, being different
from zero only if there exist “privileged”, or “more likely” states among the accessible ones. CMPR[P] quantifies the
presence of correlational structures as well [15,16]. The opposite extremes of perfect order and maximal randomness
possess no structure to speak of and, as a consequence, CMPR[P] = 0. In between these two special instances a wide
range of possible degrees of physical structure exist, degrees that should be reflected in the features of the underlying
probability distribution.

Both quantifiers HS[P] and CMPR[P] can be calculated for any probability distribution function P . However P
itself is not a uniquely defined object and several approaches have been employed in the literature so as to “extract” it
from the given time series. Just to mention some frequently used extraction procedures: (a) amplitude-statistics [28],
(b) binary symbolic-dynamics [29], (c) Fourier analysis [30], (d) wavelet transform [31,32], (e) partition entropies
[8], (f) permutation entropy [33,34], (g) discrete entropies [35], etc. There is ample freedom to choose among them.
An essential aspect of our work refers to this election. In fact we work with two different PDF’s: one based on
amplitudes statistics and the other devised via the attractor reconstruction procedure proposed by Bandt and Pompe
[33], usually called in the literature the permutation entropy. The reason for this double PDF-choice is that the one
based on amplitudes-statistics reflects on changes produced by each randomizing technique over the chaotic map’s
invariant-measure, while the Bandt–Pompe’s procedure’s PDF reflects on the mixing quality of the map under analysis
(see the Appendix). As for the concomitant details:

• For extracting P via amplitude statistics, divide the interval [0, 1] into a finite number nbin of non overlapping
subintervals Ai : [0, 1] =

⋃nbin
i=1 Ai and Ai

⋂
A j = ∅ ∀i 6= j . Note that N in Eq. (2) is equal to nbin. We then

employ the usual histogram method, based on counting the relative frequencies of the time series values within each
subinterval. Of course, in this approach the temporal order of the time-series plays no role at all. The quantifiers
obtained via the ensuing PDF are called in this paper H (hist)

S and C (hist)
MPR . Let us stress that for a timeseries with finite

length M it is relevant to consider an optimal value of nbin, as will be explained in Section 4. Finite-size effects
for the estimation of Shannon’s entropy have already been considered in the literature. Enlightening results can be
consulted in Ref. [36].

• In extracting P by recourse to the Bandt–Pompe method (BPM) [33] the resulting probability distribution P
is based on the details of the attractor reconstruction procedure. Causal information is, consequently, duly
incorporated into the construction-process that yields P . The quantifiers obtained via the ensuing PDF are called in
this paper H (BP)

S and C (BP)
MPR. A notable Bandt–Pompe result is getting a clear improvement of the Information

Theory based quantifiers obtained by using their P-generating algorithm [6,7,19,20,22,23,37]. The extracting
procedure is as follows: For the timeseries {xt : t = 1, . . . , M} and an embedding dimension D > 1, we look
for “ordinal patterns” of order D [9,33,34] generated by

(s) 7→
(
xs−(D−1), xs−(D−2), . . . , xs−1, xs

)
, (5)

which assign to each “time s” a D-dimensional vector of values pertaining to the times s, s − 1, . . . , s − (D − 1).
Clearly, the greater the D-value, the more information on “the past” is incorporated into these vectors. By the
“ordinal pattern” related to the time (s) we mean the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . , D − 1)

defined by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (6)
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Table 3
rmix as a function of the iteration-order j for the TWBM and LOG chaotic maps, respectively

j LOG TWBM

1 0.56789 0.333333333
2 0.31848 0.111111111
3 0.13290 0.037037037
4 0.05788 0.012345679
5 0.03646 0.004115226
6 0.01791 0.001371742
7 0.01152 0.000457247
8 0.00515 0.000152416

In order to get a unique result we consider that ri < ri−1 if xs−ri = xs−ri−1 . Thus, for all the D! possible
permutations π of order D, the probability distribution P = {p(π)} is defined by

p(π) =
]{s|s ≤ M − D + 1; (s) has type π}

M − D + 1
. (7)

In the last expression the symbol ] stands for “number”. We then evaluate the normalized entropy H (BP)
S and the

intensive statistical complexity measure C (BP)
MPR using this “permutation” probability distribution. The advantages

of the Bandt–Pompe method reside in (a) its simplicity, (b) the associated extremely fast calculation-process, (c)
its robustness in presence of observational and dynamic noise, and (d) its invariance with respect to nonlinear
monotonous transformations. The Bandt–Pompe’s methodology is not restricted to a timeseries representative
of low dimensional dynamic systems but can be applied to any type of time series (regular, chaotic, noisy or
reality based), with a very weak stationary assumption (for k = D, the probability for xt < xt+k should not
depend on t [33]). One also assumes that enough data are available for a correct attractor reconstruction. Of course,
the embedding dimension D plays an important role in the evaluation of the appropriate probability distribution
because D determines the number of accessible states D!. Also, it conditions the minimum acceptable length M
of the timeseries that one needs in order to work with a reliable statistics. In relation to this last point Bandt and
Pompe suggest, for practical purposes, to work with 3 ≤ D ≤ 7 with a time lag τ = 1. This is what we do here (in
present work we use D = 6).

In this paper the representation plane has H (hist)
S as the x-coordinate and C (BP)

MPR as the y-coordinate. Note that two
probability distributions are thus being employed. This is an essential feature that allows us to obtain the results to be
reported next.

4. Results and discussion

The examples below illustrate the preceding considerations.

• The Three Way Bernoulli Map (TWBM) given by

xn+1 =

3xn if 0 ≤ xn ≤ 1/3
3xn − 1 if 1/3 < xn ≤ 2/3
3xn − 2 if 2/3 < xn ≤ 1.

(8)

This map shares with many others (the fourway tailed shift, the threeway tailed shift, the skew tent, etc.) a uniform
invariant density ρinv (see Appendix) over the interval [0, 1] while the mixing constant of the whole family of maps
f j is given by r j

mix = (1/3) j (see Table 3).
• Let us consider now the Logistic Map (LOG) given by

xn+1 = 4xn(1 − xn), (9)

whose natural invariant density can be exactly determined, being expressed as

ρinv(x) =
1

π
√

x(1 − x)
. (10)
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Fig. 1. Shannon Entropy H (hist)
S as a function of the number of bins nbin for different number of data (file sizes) M = 106 (solid line) and

M = 5 × 107 (dashed line). (a) LOG map, (b) TWB map.

The ensuing rmix-values are also displayed in Table 3. They have been obtained by recourse to the Transfer Operator
Method, as described in Ref. [2].

As pointed out in the previous section, some considerations regarding the number of subintervals in the histogram
evaluation are in order. Fig. 1 displays H (hist)

S as a function of nbin = N for LOG (Fig. 1(a)) and TWBM (Fig. 1(b)).

Two different lengths M were considered: 1 × 106 and 5 × 107. In the case of these two M values the entropy H (hist)
S

first increases with nbin = N , reaches a maximum, and finally decreases. It would thus seem plausible that nbin must
tend to ∞ so as to get the maximum entropy H (hist)

S . However, Fig. 1 shows that there exists an optimum value (it is
5 × 104 for M = 1 × 106). The reason for this behaviour is the finite time-series’ length M < ∞. Thus, the number
of points within each subinterval decreases as nbin increases, and, consequently, we cannot have a good statistics with
nbin values that are larger than the optimum one. This is because, in the case of a small data-file, a finer grid will
not add new accessible states to the system. In consequence, the term

∑
p j log p j does not change, although the

normalization constant increases with nbin, thus making Hs a decreasing function for these finer grids. The plateau-
size for which H (hist)

S remains almost constant does grow as the file-size increases. Another important issue is whether
putative special features of the particular data set used can have some influence on the entropy computation. In order
to confront the issue one generates, for a given length M , several “surrogates” iterating the map from a different initial
condition. Then one evaluates the mean value (over the surrogates) of the quantifier (for example ĤS ≡ 〈HS〉). In this

work convergence tests have been made employing 8 surrogates with M = 5 × 107 data each and Ĥ (hist)
S is taken as

the entropy value in subsequent considerations. We have verified that neither a higher number of surrogates or a larger

file-size affects the five most significant decimals of Ĥ (hist)
S , the x-coordinate of our representation plane. For notation

simplicity the wide hat symbol is omitted.
The effects of the two randomization techniques discussed above on H (hist)

S are illustrated in Fig. 2 for the LOG-
instance as a function of nbin. In Fig. 2(a) the dashed line is obtained with IEEE floating point numbers and the solid
line with small circles shows the effect of a 16 bits-Discretization.

Applying the most significative digit (MSB) treatment in concocting the desired “symbolic” time-series (STS)
(solid line with little “squares” in the graph), we ascertain that the ensuing entropic values considerably increase, as
expected.

The maximum (valid) nbin-value is 2n
− 1 (65535 for 16-bits), and the maximum entropy is obtained precisely for

this value. Furthermore, the n-bits representation has the same entropy than the floating point numbers representation
only when the number of possible values 2n is an exact multiple of nbin (note in Fig. 2(a) the coincidence for values
65536, 65536/2, 65536/3, etc). This is an usual situation when the histogram of a discrete distribution is made. In
fact the histogram grid is equivalent to collapse a subinterval of length 1/nbin into a unique value. On the other hand
a n-bits discretization collapses each subinterval of length 1/2n into a unique natural value and consequently induces
another grid. That is the reason the entropy of the discrete series is lower than that of the floating point representation
if nbin 6= 2n/k, (k = 1, 2, . . .) as Fig. 2(a) shows.



Author's personal copy

3380 L. De Micco et al. / Physica A 387 (2008) 3373–3383

Fig. 2. Shannon Entropy H (hist)
s as a function of the number of bins nbin for both randomization process for the LOG map. (a)Discretization: IEEE

floating point (dashed line); 16 bits (solid line with circles); MSB (solid line with squares). (b) Skipping: IEEE floating point — original map f
(dashed line); second iterate map f 2 (circles); forth iterate map f 4 (squares).

Fig. 3. The representation plane H (hist)
S –C(BP)

MPR for both randomization processes. (a) For the LOG map Discretization produces an STS with

the ideal coordinates (1, 0) but Skipping is not capable to improve H (hist)
S and the STS has coordinates (0.98, 0); (b) For the TWBM map

Discretization decreases the y-coordinate to the ideal value C(BP)
MPR = 0 but it also decreases the x-coordinate to H (hist)

S = 0.96 while Skipping
improves the y coordinate and it does not change the entropy. Then the STS reaches the ideal point (1, 0).

In Fig. 2(b) Skipping effects are illustrated. The dashed line is again that obtained with IEEE floating point numbers
using the original map f . The small circles correspond to the second iterate of the map, f 2, and the squares to f 4.
Note that the same entropy H (hist)

S is obtained in all cases. This behaviour confirms that Skipping does not affect the
P when amplitude statistics is used [4]. As a final point regarding this figure we note that the Shannon entropy of
the STS obtained using the least significant digit (LSB) in the randomization process yields entropy values almost
identical to the MSB-ones (they are not displayed in Fig. 2(a)).

Our most significative result is depicted in Fig. 3, for both randomization techniques and for the LOG (a) and
TWBM (b) maps: the H (hist)

S × C (BP)
MPR-plane. The goal of any randomization technique is to approach the ideal (1, 0)-

point in this plane, as closely as possible, since there randomization is optimal. The planar representation clearly
helps in ascertaining features of the randomization-approaches quality.

In the LOG map the initial CHTS point in the H (hist)
S × C (BP)

MPR-plane is approximately (0.98, 0.5). This point
corresponds to the entropy of a nonuniform histogram with high complexity value indicating that it has a geometric
structure. Skipping destroys this structure pushing the y-coordinate toward the ideal value 0, but the histogram is not
modified by it and, consequently, the x-coordinate does not change. In spite of the fact that the STS (indicated as
Sskip

OUT) has better statistical properties than the CHTS (indicated as SIN), it does not reach the ideal point (1, 0). On
the other hand, Discretization decreases the y-coordinate and increases the x-coordinate so that the STS does reach
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the ideal coordinates (1, 0). The reason is that the original CHTS follows the logistic equation with a nonuniform
histogram. However, the number of values in [0, 0.5) is almost equal to the corresponding number in [0.5, 1], while
the MSB technique produces a random sequence of 1′s and 0′s (a pseudo random bit generator). The same applies to
the LSB alternative.

Note that the CHTS generated by the TWBM map “has” the ideal value H (hist)
S = 1 from the very beginning. For

the TWBM map Discretization decreases the y-coordinate to the ideal value C (BP)
MPR = 0 and at the same time it also

decreases the x-coordinate to H (hist)
S = 0.96. We conclude then that the best choice is Skipping, that improves the

y-coordinate without any change of the x-coordinate, allowing for the STS to reach the ideal point (1, 0).

5. Summary

After performing extensive simulation-runs with many other maps, characterized by uniform as well as by
nonuniform natural invariant measures (see the Appendix), we are in a position to summarize our main conclusion:
Skipping is better than Discretization for maps with a uniform natural invariant measure, and viceversa in the non
uniform case. The reason is clear: Skipping decreases C (BP)

MPR without changing H (hist)
S . Further, the endpoint in our

representation plane of the symbolic timeseries lies in very close proximity to the ideal point (1, 0) because maps
with uniform natural invariant distributions have H (hist)

S from the very beginning and only the mixing properties of
the map can be improved. The number of iterations that must be used depends on the number of significant figures
required. On the contrary, for maps with non-uniform invariant measures (the LOG one is a paradigmatic example)
Skipping diminishes the complexity C (BP)

MPR without changing H (hist)
S and, consequently, the ideal point (1, 0) is never

reached, while Discretization decreases C (BP)
MPR and increases H (hist)

S as well, thus leading our representative point
towards the ideal one. A different and very fruitful approach to study complex systems are Recurrence Plots (RP) (see
the excellent review by Marwan et al. [38]). Such an analysis is very efficient, specially for nonsuperlong sequences.
Then we have used Marwan et al.’s tools to analyse the series in Fig. 3 and found that measures of complexity based on
diagonal lines on the RP (see, for example, DET in the CRP toolbox for Matlab [39]) do support the main conclusions
drawn in the above paragraph. A more detailed comparison between both methods will be published elsewhere.
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Appendix. Probabilistic description of a map evolution

Two central concepts are essential for our present purposes: those of (i) invariant probability measure and (ii)
mixing. We revisit them next. Let a timeseries over [0, 1] generated by a 1D-chaotic map f by iterating the map
starting from a single initial value x0, so that the CHTS SIN = {x0, x1, . . . , x∞} ensues. Another approach is also
possible by considering the evolution of an ensemble of different initial values [2]. The relative frequency of initial
values in a subset A ⊂ [0, 1] can be interpreted as the probability µ0(A) of having an initial value x0 ∈ A and is
called the probability measure of A

µ0(A) =

∫
A

ρ0(x) dx . (A.1)

Eq. (A.1) defines a probability density ρ0 over the whole phase-space [0, 1] (for more refined mathematical details
see Ref. [2]). We now define µn(A) as the probability of finding an iterate xn in the subset A. The appropriate density
is now

µn(A) =

∫
A

ρn(x) dx . (A.2)
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Thus, instead of the evolution of a particular initial condition, we can consider that of ρ0 in probability space. The
concomitant process is generated by the so-called Perron-Frobenius operator L f : PDF → PDF [2–4] in the form

ρn+1 = L f ρn, (A.3)

whose two largest (in absolute value) eigenvalues (η0; η1) acquire special relevance. Conservation of probability
leads to the following (trivial) condition for arbitrary subsets A

µn+1 (A) = µn ( f −1(A)), (A.4)

where f −1(A) is the pre-image of A, i.e. the set of all points that are mapped onto A by one iteration step. Eq. (A.4)
tells us that the relative frequency of iterates xn+1 in the subset A must be equal to the relative frequency of iterates xn
in the subset f −1(A). Particular interest is attached to invariant probability measures (also called invariant measures)
that satisfy

µn+1 (A) = µn (A), (A.5)

and their corresponding invariant PDF’s, also called invariant densities. A map is called ergodic if for any integrable
test function T (x) the time average equals the ensemble average. For such maps the time average does not depend
on the initial x0 [2]. There may exist several invariant measures for an ergodic map, but only one of them is really
important in the sense that, if we iterate a randomly chosen initial point, the iterates will be distributed according to
this measure “almost surely”. This measure is called the natural invariant measure µinv and its corresponding PDF is
called the natural invariant density ρinv.

A map f is called mixing if an arbitrary, smooth initial probability density ρ0 converges to ρinv [40–44]. Since each
element of the initial set of initial conditions (with PDF ρ0) evolves in time independently of the others, the operator
L f is linear in spite of the map’s nonlinearity. ρinv is the L f -eigenvector corresponding to the eigenvalue η0 = 1.
It can be analytically obtained only in a few cases but it may be approximated numerically. The eigenvalue with the
second largest absolute value, η1, has a special and quite important meaning: its absolute value gives the “speed” with
which one approaches the natural invariant density, called the mixing constant rmix of the chaotic map. The smaller
rmix, the faster the mixing process. It has been shown that maps f 2, f 3, . . . obtained by iterating a given f share a
common ρinv but the pertinent rmix decreases as the number of iterations increases (see Table 3). In other words, the
iterated maps are better mixing maps [4].
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[23] L. Zunino, D.G. Pérez, M.T. Martı́n, A. Plastino, M. Garavaglia, O.A. Rosso, Phys. Rev. E 75 (2007) 021115.
[24] X. Calbet, R. Lopez-Ruiz, Phys. Rev. E 63 (2001) 066116.
[25] S. Callegari, G. Setti, P.J. Langlois, International Symposium on Circuits and Systems, ISCAS97, 1997, p. 781.
[26] M. Jessa, IEEE Trans. Circuits and Syst. I 49 (2002) 84.
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[33] C. Bandt, B. Pompe, Phys. Rev. Lett. 88 (2002) 174102.
[34] K. Keller, M. Sinn, Physica A 356 (2005) 114.
[35] J.M. Amigó, L. Kocarev, I. Tomovski, Physica D 228 (2007) 77.
[36] U. Schwarz, A.O. Benz, J. Kurths, A. Witt, Astron. Astrophys. 277 (1993) 215.
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