<u>Temas:</u> Integración Numérica: Fórmulas cerradas de Newton-Cotes, Método de Trapecios, Método de Simpson 1/3, Método de Simpson 3/8. Método de Romberg.

1. Se mide la velocidad de un automóvil por medio de un radar durante 90 segundos, tomando muestras cada 6 segundos, según se aprecia en la siguiente tabla.

	t (seg)	0	6	12	18	24	30	36	42	
	v (m/seg)	37.2	40.2	44.4	46.8	44.1	39.9	36.3	32.7	
1	t (seg)	48	54	60	66	72	78	84	90	96
	v (m/seg)	29.7	25.5	23.4	26.7	31.2	34.8	36.9	38.7	39.6

Determine manualmente, usando el método de trapecios, la distancia recorrida

- a) desde t=0 hasta t=24seg.
- b) desde t=0 hasta t=36seg,
- c) desde t=0 hasta t=90seg,
- d) desde t=0 hasta t=96seg,
- 2. Aplique manualmente el método de 1/3 de Simpsom al inciso a) del ejercicio 1.
- 3. Aplique manualmente el método de 3/8 de Simpsom al inciso b) del ejercicio 1.
- 4. Programe el método trapecios y verifique los resultados del ejercicio 1.
- 5. Programe el método de 1/3 de Simpson compuesto (si es posible en forma vectorizada). Aplique el programa a los datos de los incisos a) b) y c) del ejercicio 1. Compare los resultados.
- 6. Programe el método de 3/8 de Simpson compuesto. (en forma vectorizada) Aplique el programa a los datos de los incisos b) y c) del ejercicio 1. Compare los resultados.
- 7. Una partícula de masa \mathbf{m} que se desplaza por un fluido está sujeta a una resistencia viscosa \mathbf{R} , la cual es función de la velocidad \mathbf{v} . La relación entre la resistencia \mathbf{R} , la velocidad \mathbf{v} y el tiempo \mathbf{t} está dada por la ecuación

$$t = \int_{v_i}^{v_f} \frac{m}{R(v)} dv$$

Para un determinado fluido $R(v) = -v\sqrt{v}$, donde R está en Nw y v en m/seg. Si m=10Kg y si $v_i = 19m/seg$.

Calcule el tiempo que la partícula tarda en reducir su velocidad a 5m/seg, por medio del método de 1/3 de Simpson. Determine adecuadamente el valor de h, para obtener un error menor a 10^{-3}

- 8. Por medio del método de 1/3 de Simpson determine con una tolerancia de 10^{-6} la integral $\int_0^1 \sqrt{x} \partial x$.
- 9. Determine el paso h que asegure una aproximación a las siguientes integrales con un error menor o igual a 10^{-3} . Por medio del método de 1/3 de Simpson.

a)
$$\int_0^{\pi/4} x^2 sen(x) dx$$
 b)
$$\int_0^{\pi/4} e^{3x} sen(2x) dx$$

- 10. Demuestre si se obtiene alguna ventaja al resolver el ejercicio anterior por medio del método de 3/8 de Simpson.
- 11. Sea $f(x) = e^{-x} \sin(x)$.
 - a) Encontrar la cantidad de intervalos n para que el cálculo de la integral

$$\int_{0}^{2\pi} f(x) \partial x$$

tenga error menor a 10^{-2} para el método de Simpson 1/3. Recordar que en este caso $h=2\pi/n$

- b) Calcular la integral usando el método de Simpson 1/3 y el valor de n=10.
- c) Comparar el resultado con el valor correcto de la integral, sabiendo que

$$\int e^{-x}\sin(x)\partial x = -0.5e^{-x}(\sin(x) + \cos(x))$$

- d) Explique que es lo que se observa comparando el valor de n obtenido en el inciso (a) y el error obtenido usando el valor n=10. Explique cuál es la razon de esta aparente contradicción.
- 12. Resuelva el ejercicio 1) **manualmente** por medio del método de Romberg. Compare los resultados.
- 13. Programe el método de Romberg y verifique los resultados del inciso anterior.
- 14. Resuelva el ejercicio 8) por medio del metodo de Romberg (usando el programa) y compare con el resultado obtenido con anterioridad.
- 15. Calcule la integral de $f(x) = 1/x^2$ en el intervalo [a b] = [0.2 1] usando la regla de Simpson 1/3. Use una tolerancia de 0.02 para terminar las divisiones del intervalo $h = \Delta x$, comenzando por h1 = (b a)/2). Usar al final interpolación de Richardson para mejorar más las solución.