
24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 1/15

(https://andybargh.com)

Search the site ...

Home (https://andybargh.com/) / Computer Science (https://andybargh.com/category/computer-
science/) / Understanding Fixed Point and Floating Point Number Representations

Understanding Fixed Point and Floating
Point Number Representations

In my previous post (/2014/03/25/binary-fractions/) we learnt the fundamental concepts of how binary
could be used to represent real numbers (i.e. numbers with a fractional component). When it comes to
storing these numbers though there are two major approaches in modern computing. These are Fixed
Point Notation and Floating Point Notation.

In today’s post, we continue to build our background computer science knowledge and look at the details
of these storage formats. This knowledge will be useful in upcoming posts when we dive into Data
Types the fundamental building blocks of an iOS application.

ABOUT BLOG (/BLOG/)

SWIFT DEVELOPMENTS (HTTPS://ANDYBARGH.COM/NEWSLETTER-ARCHIVE/)

https://andybargh.com/
https://andybargh.com/
https://andybargh.com/category/computer-science/
https://andybargh.com/2014/03/25/binary-fractions/
https://andybargh.com/blog/
https://andybargh.com/newsletter-archive/

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 2/15

As we learnt in my last post, fractional binary numbers have two parts, the bits that represent the integer
number (the part before the radix point) and the bits that represent the fractional part (the part after the
radix point).

Think about this! What if we had only a limited number of binary bits in which to store our fractional binary
number? This is common in many modern computers systems, How would we know how many bits to
use for the integer part and how many bits to use for the fractional part?

This is the problem that both Fixed Point and Floating Point Notations representations attempt to solve.

To get started then, let’s take a look at Fixed Point notation. It is the simpler one of the two
representations.

Fixed Point Representation
Fixed Point Notation is a representation of our fractional number as it is stored in memory. In Fixed Point
Notation, the number is stored as a signed integer in two’s complement format (/2014/03/11/signed-
numbers-in-binary/).

On top of this, we apply a notional split, locating the radix point (the separator between integer and
fractional parts) a Úxed number of bits to the left of its notational starting position to the right of the least
signiÚcant bit. I’ve illustrated this in the diagram below.

When we interpret the bits of the signed integer stored in memory we reposition the radix point by
multiplying the stored integer by a Úxed scaling factor. The scaling factor in binary is always 2 raised to a
Úxed exponent. As the scaling factor is a power of 2 it relocates the radix point some number of places to

https://andybargh.com/2014/03/11/signed-numbers-in-binary/

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 3/15

the left or right of its starting position.

During this conversion there are three directions that the radix point can be moved:

The radix point is moved to the right: This is represented by a scaling factor whose exponent is 1 or
more. In this case additional zeros are appended to the right of the least-signiÚcant bit and means
that the actual number being represented is larger than the binary integer that was stored.

The radix point remains where it is: This is represented by a scaling factor whose exponent is 0 and
means that the integer value stored is exactly the same as the integer value being represented.

The radix point is moved to the left: This is represented by a scaling factor whose exponent is
negative. This means that the number being represented is smaller than the integer number that
was stored and means that the number being represented has a fractional component.

Let’s take a look at a couple of examples.

Examples of Fixed Point Numbers

Lets assume we have an 8-bit signed binary number 00011011 that is stored in memory using 8-bits of
storage (hence the leading zeros).

In our Úrst scenario, lets also assume this number was stored as a signed Úxed-point representation with
a scale factor of 2 .

As our scale factor is greater than 1, when we translated the bits stored in memory into the number we are
actually representing, we move the radix point two places to the right. This gives us the number:
1101100 (Note the additional zeros that are appended to the right of the least signiÚcant bit).

In our second scenario, let us assume that we start off with the same binary number in memory but this
time we’ll assume that it is stored as a signed Úxed-point representation with a scale factor of 2 . As the
exponent is negative we move the radix point three places to the left. This gives us the number
00011.011

Advantages and Disadvantages of Fixed Point Representation

2

2

2

-3

2

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 4/15

The major advantage of using a Úxed-point representation is performance. As the value stored in memory
is an integer the CPU can take advantage of many of the optimizations that modern computers have to
perform integer arithmetic without having to rely on additional hardware or software logic. This in turn can
lead to increases in performance and when writing your apps, can therefore lead to an improved
experience for your users.

However, there is a downside! Fixed Point Representations have a relatively limited range of values that
they can represent.

So how do we work out the maximum and minimum numbers that can be stored in a Úxed-point
representation and determine whether it is suitable for our needs? All we do is take the largest and
smallest integer values that can be stored in the given number of bits and multiply that by the scale factor
associated with our Úxed-point representation. For a given signed binary number using b bits of storage
with a scale factor of f the maximum and minimum values that can be stored are:

Minimum: −2 /2

Maximum: (2 −1)/2

If the number you want to represent Úts into this range then things are great. If it doesn’t though, you have
to look for an alternative! This is where Floating Point Notation comes in.

Floating Point Notation
Floating Point Notation is an alternative to the Fixed Point notation and is the representation that most
modern computers use when storing fractional numbers in memory. Floating Point Notation is a way to
represent very large or very small numbers precisely using scientiÚc notation in binary. In doing so,
Floating Point Representation provides a varying degrees of precision depending on the scale of the
numbers that you are using.

For example, the level of precision we need when we are talking about the distance between atoms (10
m) is very different from the precision we need when we’re talking about the distance between the earth
and the sun (10 m). This is a major beneÚt and allows a much wider range of numbers to be
represented than is possible in Fixed Point Notation.

Floating Point Representation is based on ScientiÚc Notation. You may have used ScientiÚc Notation in
school.

b−1 f

b−1 f

-10

11

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 5/15

When we use ScientiÚc Notation in decimal (the form you’re probably most familiar with), we write
numbers in the following form:

+/- mantissa x 10

In this form, there is an optional sign indicating whether the overall number is positive or negative,
followed by a mantissa (also known as a signiÚcand) which is a real (fractional) number which in turn is
multiplied by a number base (or radix) raised by an exponent. As we know, in decimal this number base is
10.

Floating Point Representation is essentially ScientiÚc Notation applied to binary numbers. In binary, the
only real difference is that the number base is 2 instead of 10. We would therefore write Floating Point
Numbers in the following form:

+/- mantissa x 2

Now, you may not have realised it but when we write numbers in scientiÚc notation (whether they be
binary or decimal) we can write them in a number of different ways.

In decimal we could write 1.5 x 10 , 15 x 10 and 150 x 10 and yet all these numbers have exactly the
same value.

This provides Ûexibility but with this Ûexibility also comes confusion. To try and address this confusion a
common set of rules known as normalized scientiÚc notation are used to deÚne how numbers in scientiÚc
notation are normally written.

Normalized Scienti䏴್c Notation

Normalised ScientiÚc Notation is a nomenclature that standardises the way we write numbers in
scientiÚc notation. In the normalized form we have a single key rule:

“We choose an exponent so that the absolute value of the mantissa remains greater than or equal to 1 but
less than the number base.”

Let’s look at a couple of examples!

exponent

exponent

2 1 0

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 6/15

If we had the decimal number 50010 and wanted to write it in scientiÚc notation we could write it as either
500 x 10 or 50 x 10 .

In normalized form though, we would apply the rule above and move the radix point so that only a single
digit, greater than or equal to 1 and less than (in this case) 10 were to the left of the radix point.

In this case this would mean moving our radix point two places to the left so we had 5.0 x 10 .

We would then need to work out our exponent. To get back to our original number we would need to
move our radix point two places to the right. Remember what we learnt earlier? If we have to move our
radix point to the right to get back to our original number that means the exponent is positive. This gives
us: 5.0 x 10 .

Lets look at a slightly more complicated example, this time in binary.

What if we had the binary number 10.1 ? What would this be in scientiÚc notation? Again we apply the
rules: We need to have a mantissa that is greater than or equal to 1 and less than our number base
(which this time is 2).

That would mean our mantissa would need to be 1.01 x 2 . To get back to our original number we would
need to move our radix point 1 place to the right. What does right mean? That means the exponent is
positive.

Last example. This time one that is a little more tricky!

Imagine I had the number 0.111 and wanted to write it in normalized scientiÚc notation? Again, we apply
the rules. We need a mantissa greater than or equal to 1 and less than 2.

That means we want to write our mantissa as 1.11 x 2 .

Now, to get back to our original number we would need to move our radix point 1 place to the… left. What
did we learn about moving to the left? That means our exponent is negative. That gives us: 1.11 x 2 .

IEEE 754 Representations

0 1

?

2

2

?

2

?

-1

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 7/15

As you’ve probably worked out by now, Floating Point numbers are used everywhere in modern
computing. Whether it be the percentage of the market that have upgraded to the latest version of iOS,
the current position and orientation of your iPhone in space or the amount of money Ûowing into your your
bank account following the release of your latest blockbuster app!

Because of its wide use, the format used to store Floating Point numbers in memory has been
standardized by the Institute of Electrical and Electronic Engineers in something called IEEE 754. This
standard deÚnes a number of different binary representations that can be used when storing Floating
Point Numbers in memory:

Half Precision – Uses 16-bits of storage in total.

Single Precision – Uses 32-bits of storage in total.

Double Precision – Uses 64-bits of storage in total.

Quadruple Precision – Uses 128-bits of storage in total.

In each of these cases, their basic structure is as follows:

(-1) x mantissa x 2

When it comes to storing Floating Point Numbers in memory, only three critical parts of that basic
structure are stored:

Sign

Exponent

Mantissa

The diagram below shows these parts are stored in memory:

The Sign

sign exponent

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 8/15

As I hinted at above, all four binary representations deÚned in the IEEE 754 standard, have the most
signiÚcant bit as a sign bit and use it to store the sign of the overall number. In similar vein to what we
have seen in previous posts, if the sign bit is clear (a value of 0) the overall number is positive. If the bit is
set (a value of 1) the number is negative.

Exponent

The Exponent represent the power to which the mantissa will be raised. There are always a Úxed number
of exponent bits when storing a Ûoating point representation in memory and the exact number of bits that
are used is deÚned by the particular IEEE 754 representation (Single Precision, Double Precision etc). We’ll
take a look at this shortly.

In all cases, the exponents in each of these representations need to be able to represent both positive
exponents (in order to represent very large numbers) and negative exponents (in order to represent very
small numbers). To avoid the complications of having to store the exponents in two’s complement
format, something called an exponent bias is used.

Exponent Bias

Exponent Bias is where the value stored for the exponent is offset from the actual exponent value by a
bias. The bias is simply a number that is added to the exponent to ensure that the value that is stored is
always positive. The table below shows the number of bits used for the exponent in each of the formats,
the allowed range of values the different exponents can have before applying the bias along with the
allowed values after applying the bias:

Representation Bits

Normal Range

(Pre Bias)

Bias
ModiÚed Range

(Post Bias)
Notes

Half Precision 5 -14 to +15 +15 +1 to +30

Biased values of 0 (all

bits clear) and 31 (all

bits set) have special

meaning.

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 9/15

Single Precision 8 -126 to +127 +127 +1 to +254

Biased values of 0 (all

bits clear) and 255 (all

bits set) have special

meaning.

Double Precision 11 -1022 to +1023 +1023 +1 to +2046

Biased values of 0 (all

bits clear) and 2047 (all

bits set) have special

meaning.

Quadrupal Precision 15 -16382 to +16383 +16383 +1 to +32766

Biased values of 0 (all

bits clear) and 32767

(all bits set) have

special meaning.

Mantissa (a.k.a. Sign䏴್cand) Bits

In the IEEE 754 representations, the mantissa is expressed in normalized form. The formats follow the
same rules for normalization as we saw with ScientiÚc Notation, and puts the radix point after the Úrst
non-zero digit.

In binary though, we also get a nice little bonus!

As we are expressing our numbers in binary, we get the beneÚt of knowing that the Úrst non-zero digit will
always be a 1 (after all we can only have 1’s or 0’s). Given this, we are therefore able to drop that Úrst bit,
simply assuming it is there, and instead gain an additional (implicit) bit of precision.

When numbers are stored, we only store the part of the mantissa that represents the fractional part of the
number, the part to the right of the radix point. The table below shows the effect of the implicit integer bit
and the effect that it has on the overall precision:

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 10/15

Representation Precision Bits Effective Precision

Half Precision 1 bit (implicit) + 10 bits (explicit) 11 bits

Single Precision 1 bit (implicit) + 23 bits (explicit) 24 bits

Double Precision 1 bit (implicit) + 52 bits (explicit) 53 bits

Quadrupal Precision 1 bit (implicit) + 112 bits (explicit) 112 bits

Summary of IEEE 754 Representations

In summary then, the IEEE 754 standard deÚnes four main formats for the representation of binary
Ûoating point numbers in memory:

Representation Total Bits Sign Bit Mantissa Bits Exponent Bits

Half Precision 16 1 1 implicit + 10 5

Single Precision 32 1 1 implicit + 23 8

Double Precision 64 1 1 implicit + 52 11

Quadrupal Precision 128 1 1 implicit + 112 15

In addition to these formats, the IEEE 754 standard also deÚnes a number of numerical symbols that it is
also worth knowing about. We’ll explore these brieÛy in the next section.

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 11/15

Special Values

Representing Zero

As we have seen, when representing numbers in Floating Point and storing them in memory, we write our
numbers in a normalized form before dropping the implicit set bit before the radix point. When the
numbers in memory are interpreted, the implicit bit is re-instated. This implicit assumption that the bit
immediately to the left of the radix point is set to 1 causes problems though. What if we wanted to
represent zero?

To get around that problem, the IEEE 754 standard deÚnes zero as a special case and represents it by
using an exponent of 0 and a mantissa of 0. Due to the sign bit still being available this leads to values of
-0 and +0 the standard deÚnes that they must compared as equal.

Denormalized Form

The IEEE 754 also allows representation of numbers in a denormalized form. If the bits in the exponent
are all zeros but the mantissa is non-zero value the number is said to be stored in a denormalized form.
 In this case, when the number in memory is interpreted, the assumption that there is a bit set to the left of
the radix point is again ignored. This leads to numbers in the form:

Representation

Half Precision (-1) x 0.f x 2

Single Precision (-1) x 0.f x 2

Double Precision (-1) x 0.f x 2

Quadrupal Precision (-1) x 0.f x 2

Where s is the sign and f is the fractional part of the mantissa.

In䏴್nity

s -14

s -126

s -1022

s -16382

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 12/15

In䏴್nity

IEEE standard also deÚnes a mechanism for representing inÚnity. InÚnity is represented by an exponent
with all the bits set and a mantissa with all the bits cleared. Again, the sign bit remains in effect which
leads to the concept of +inÚnity and -inÚnity.

Not a Number (NaN)

The Únal thing that is of interest in the IEEE standard is the concept of Not A Number (NaN). This is used
to represent a number that is not a real number. This is represented in memory by an exponent with all
bits set and a non-zero mantissa. Most commonly you will see this reported by your compiler, usually
when you’ve tried to divide something by zero.

Summary of Special Values

In summary then, the table below shows the different values of the exponent and mantissa and the
special values that are being represented as deÚned by the IEEE 754 standard:

Exponent Mantissa Object Represented

Value of 0 (i.e. Stored Value == Bias) All Bits Set to 0 Zero

Value of 0 (i.e. Stored Value == Bias) Non-Zero +/- Denormalized number

All Bits Set to 1 All Bits Set to 0 +/- InÚnity

All Bits Set to 1 Non-Zero NaN (Not a Number)

Summary
That about wraps it up for Fixed Point and Floating Point numbers for today. By reading this post I hope
you will have gained a deep understanding of the differences between Fixed Point and Floating Point
representations. That will allow you to make a much more informed choice about how to store

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 13/15

information within your apps in future. In forthcoming posts you will see that this provides a solid
foundation on which to build your iOS development knowledge. Your knowledge should continue to grow
if you work through my next post!

For now though, thanks for joining me and if you have any questions, please don’t hesitate to leave them
in the comments below.

Image credit: https://Ûic.kr/p/iCc7qY (https://Ûic.kr/p/iCc7qY)

 (http://twitter.com/share?url=https://andybargh.com/fixed-and-floating-point-

binary/&text=Understanding+Fixed+Point+and+Floating+Point+Number+Representations+)

 (https://bufferapp.com/add?url=https://andybargh.com/fixed-and-floating-point-

binary/&text= Understanding Fixed Point and Floating Point Number Representations)

(http://www.facebook.com/sharer.php?u=https://andybargh.com/fixed-and-floating-point-

binary/) (https://plus.google.com/share?url=https://andybargh.com/fixed-and-floating-

point-binary/) (http://www.linkedin.com/shareArticle?

mini=true&url=https://andybargh.com/fixed-and-floating-point-binary/) (mailto:?

subject=Understanding Fixed Point and Floating Point Number

Representations&body=%20https://andybargh.com/fixed-and-floating-point-binary/)

Related Posts:

April 8, 2014
Filed Under: Computer Science (https://andybargh.com/category/computer-science/)
Tagged With: Binary (https://andybargh.com/tag/binary/), Computer Science (https://andybargh.com/tag/compsci/)

How To Convert
Between Binary and
Decimal Fractions

(http://andybargh.com/2014/03/25/binary-
fractions/)

Binary Sign Extension
(http://andybargh.com/2014/03/14/binary-

sign-extension/)

The Swift Numeric
Data Types

(http://andybargh.com/2015/11/25/swift-
numeric-data-types/)

Signed Numbers in
Binary

(http://andybargh.com/2014/03/11/signed-
numbers-in-binary/)

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

https://flic.kr/p/iCc7qY
http://twitter.com/share?url=https://andybargh.com/fixed-and-floating-point-binary/&text=Understanding+Fixed+Point+and+Floating+Point+Number+Representations+
https://bufferapp.com/add?url=https://andybargh.com/fixed-and-floating-point-binary/&text=%20Understanding%20Fixed%20Point%20and%20Floating%20Point%20Number%20Representations
http://www.facebook.com/sharer.php?u=https://andybargh.com/fixed-and-floating-point-binary/
https://plus.google.com/share?url=https://andybargh.com/fixed-and-floating-point-binary/
http://www.linkedin.com/shareArticle?mini=true&url=https://andybargh.com/fixed-and-floating-point-binary/
javascript:void((function()%7Bvar%20e=document.createElement('script');e.setAttribute('type','text/javascript');e.setAttribute('charset','UTF-8');e.setAttribute('src','//assets.pinterest.com/js/pinmarklet.js?r='+Math.random()*99999999);document.body.appendChild(e)%7D)());
mailto:?subject=Understanding%20Fixed%20Point%20and%20Floating%20Point%20Number%20Representations&body=%20https://andybargh.com/fixed-and-floating-point-binary/
https://andybargh.com/category/computer-science/
https://andybargh.com/tag/binary/
https://andybargh.com/tag/compsci/
http://andybargh.com/2014/03/25/binary-fractions/
http://andybargh.com/2014/03/25/binary-fractions/
http://andybargh.com/2014/03/14/binary-sign-extension/
http://andybargh.com/2014/03/14/binary-sign-extension/
http://andybargh.com/2015/11/25/swift-numeric-data-types/
http://andybargh.com/2015/11/25/swift-numeric-data-types/
http://andybargh.com/2014/03/11/signed-numbers-in-binary/
http://andybargh.com/2014/03/11/signed-numbers-in-binary/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 14/15

Pattern Matching in Swift
11 comments • 6 months ago•

Optionals in Swift
2 comments • 9 months ago•

ALSO ON ANDYBARGH.COM

0 Comments AndyBargh.com Login1

 Share⤤ Sort by Best

Start the discussion…

Be the first to comment.

 Recommend


(h
tt
p:
//a
nd
yb
ar
gh
.c
o
m
/c
on
ta
ct
)


(h
tt
p:
//a
nd
yb
ar
gh
.c
o
m
/f
ac
eb
oo
k)


(h
tt
ps
://
w
w
w.
fli
ck
r.
co
m
/p
ho
to
s/
81
08
84
7
@
N
05
/)


(h
tt
p:
//
w
w
w.
gi
th
ub
.c
o
m
/a
ba
rg
h)


(h
tt
ps
://
pl
us
.g
oo
gl
e.
co
m
/1
12
41
53
42
58
01
64
52
17
64
/p
os
ts)


(h
tt
p:
//
uk
.li
nk
ed
in
.c
o
m
/p
ub
/a
nd
y­
ba
rg
h/
33
/1
4/
a4
7)


(h
tt
p:
//
uk
.p
in
te
re
st.
co
m
/a
nd
yb
ar
gh
54
/)


(h
tt
p:
//t
wi
tte
r.
co
m
/a
ba
rg
h)


(h
tt
ps
://
w
w
w.
yo
ut
ub
e.
co
m
/c
ha
nn
el/
U
C
w
H
F
od
h
F
S
8­
l9
Xj
H
O
q
V
J3
E
A
)

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

http://disq.us/url?url=https%3A%2F%2Fandybargh.com%2Fpattern-matching-in-swift%2F%3A1kudpsjfJb_LFQymkMAYdQmUdrQ&imp=1s0hgg8397rn7u&prev_imp&forum_id=3346942&forum=andybargh&thread_id=4357338107&thread=4590149902&zone=thread&area=bottom&object_type=thread&object_id=4590149902
http://disq.us/url?url=https%3A%2F%2Fandybargh.com%2Foptionals-in-swift%2F%3AqPLHunbMJZ640K5KOiX5S73tSDc&imp=1s0hgg8397rn7u&prev_imp&forum_id=3346942&forum=andybargh&thread_id=4357338107&thread=4361018590&zone=thread&area=bottom&object_type=thread&object_id=4361018590
https://disqus.com/home/forums/andybargh/
https://disqus.com/home/inbox/
http://andybargh.com/contact
http://andybargh.com/facebook
https://www.flickr.com/photos/8108847@N05/
http://www.github.com/abargh
https://plus.google.com/112415342580164521764/posts
http://uk.linkedin.com/pub/andy-bargh/33/14/a47
http://uk.pinterest.com/andybargh54/
http://twitter.com/abargh
https://www.youtube.com/channel/UCwHFodhFS8-l9XjHOqVJ3EA
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

24/8/2016 Understanding Fixed Point and Floating Point Number Representations

https://andybargh.com/fixed­and­floating­point­binary/ 15/15

Copyright © 2016 · AndyBargh.com (http://andybargh.com). All rights reserved. · Log in

(https://andybargh.com/wp-login.php)

Permissions Policy (/permissions-policy) · Privacy Policy (/privacy-policy)

I use cookies to ensure that I give you the best experience on my website. If you continue to use this site I'll assume that you are happy

with it. OK

http://andybargh.com/
https://andybargh.com/wp-login.php
https://andybargh.com/permissions-policy
https://andybargh.com/privacy-policy
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

