UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA

ÁREA: CONTROL

CÁTEDRA: Sistemas de Control (4E2)

para Ingeniería Eléctrica/Electromecánica/Mecánica.

Guía Nº 1: TRANSFORMADA DE LAPLACE

N°1 Deducir la Transformada de Laplace (TL) para las siguientes funciones:

- Función escalón unitario, u(t)
- **b**) Función impulso, $\delta(t)$

N°2 Expresar la TL de las siguientes funciones:

a)
$$g(t) = \frac{d^n f(t)}{dt^n}$$

a)
$$g(t) = \frac{d^n f(t)}{dt^n}$$

b) $g(t) = \int f(t) dt$

N°3 Determinar el valor de f(t) para $t \to \infty$, y para el instante inicial, t = 0, para las siguientes funciones transformadas:

a
$$F(s) = \frac{2(s+1)}{s(s+3)(s+5)}$$

b $F(s) = \frac{4(s+1)}{s(s+8)(s+3)}$

b
$$F(s) = \frac{4(s+1)}{s(s+8)(s+3)}$$

 $N^{o}4$ Usando la TL expresar en función de s las siguientes ecuaciones de los parámetros eléctricos R, L, y C y los mecánicos K, B, y M.

a)
$$v(t) = i(t)R$$
 $v(t) = \frac{1}{G} \int i(t)dt$ $v(t) = L \frac{di}{dt}$

a)
$$v(t) = i(t)R$$
 $v(t) = \frac{1}{C} \int i(t)dt$ $v(t) = L\frac{di(t)}{dt}$
b) $f(t) = Kx(t)$ $f(t) = B\frac{dx(t)}{dt}$ $f(t) = M\frac{d^2x(t)}{dt^2}$

N°5 Un sistema mecánico masa/amortiguador/resorte como el de la figura 1, tiene una ecuación diferencial de la forma:

$$M_0 \frac{d^2 x(t)}{dt^2} + B_0 \frac{dx(t)}{dt} + K_0 x(t) = f(t)$$

Se demuestra que para parámetros eléctricos R, L, C, la ecuación diferencial tiene la misma forma. Interpretando las ecuaciones siguientes como sistemas físicos (mecánicos 'o eléctricos) se requiere resolver en s las siguientes ecuaciones diferenciales.

a)
$$\frac{d^2y(t)}{dt} + 3\frac{dy(t)}{dt} + 2y\left(t\right) = x_{(t)} \qquad \text{d\'onde } x_{(t)} = u(t), \text{ escal\'on unitario con } t > 0$$
 y condiciones iniciales cero: $y_{(0)} = y_{(0)}^{'} = 0$

b)
$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 4y(t) = 3\delta(t)$$
 condiciones iniciales nulas.

c)
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + 5y(t) = u(t)$$
 $\cos y_{(0)} = -1; y'_{(0)} = 0; t > 0$
d) $\frac{d^2y(t)}{dt^2} + 9y(t) = 2t^2 + 4t$ $\cos y_{(0)} = 0; y'_{(0)} = 0$

1

d)
$$\frac{d^2y(t)}{dt^2} + 9y(t) = 2t^2 + 4t$$
 con $y_{(0)} = 0$; $y'_{(0)} = 0$

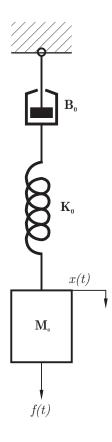


Figura 1: Sistema mecánico masa/amortiguador/resorte.

 $N^{\circ}6$ Desarrollar en fracciones simples las siguientes transformadas de Laplace y encontrar las funciones temporales.

a)
$$F_{(s)} = \frac{s+2}{s(s+1)(s+3)}$$
 f) $F_{(s)} = \frac{1}{s(s^2-6s+8)}$
b) $F_{(s)} = \frac{1}{(s+2)^3(s+3)}$ g) $F_{(s)} = \frac{1}{(s^2-4)(s-3)}$
c) $F_{(s)} = \frac{1}{(s^2+6s+25)(s+2)}$ h) $F_{(s)} = \frac{100}{s(s+2)(s^2+8s+26)}$
d) $F_{(s)} = \frac{100}{(s^2+25)(s+2)}$ i) $F_{(s)} = \frac{1}{(s^2+25)(s+2)}$
e) $F_{(s)} = \frac{7}{(s-1)(s^2-4)}$ j) $F_{(s)} = \frac{(s-2)}{(s^2+25)^2(s^2+6s+25)}$

c)
$$F_{(s)} = \frac{100}{(s^2 + 6s + 25)(s + 2)}$$
 n) $F_{(s)} = \frac{100}{s(s + 2)(s^2 + 8s + 26)}$

(a)
$$I(s) = (s^2+25)(s+2)$$
 (b) $I(s) = (s^2+25)(s+2)$
(a) $I(s) = (s^2+25)(s+2)$
(b) $I(s) = (s^2+25)(s+2)$
(c) $I(s) = (s^2+25)(s+2)$
(d) $I(s) = (s^2+25)(s+2)$
(e) $I(s) = (s^2+25)(s+2)$

Nº7 Enuncie el teorema del traslado en el tiempo.

Aplicando este teorema encuentre la trasformada de de un pulso de duración t_0 , es decir, f(t) = A = cte para $0 < t < t_0$ y f(t) = 0 para t < 0 y $t > t_0$.

 ${f N^o 8}$ Enuncie el teorema del traslado en el campo transformado s.

Aplicando este teorema, encuentre la antitransformada de: $F_{(s)} = \frac{s}{(s+\alpha)^2 + \omega^2}$