Here are the ratios of the differences of the first few superstable points.
(s*1 - s*0)/(s*2 - s*1) | = 4.70894301 |
(s*2 - s*1)/(s*3 - s*2) | = 4.68051916 |
(s*3 - s*2)/(s*4 - s*3) | = 4.66429741 |
(s*4 - s*3)/(s*5 - s*4) | = 4.66770552 |
(s*5 - s*4)/(s*6 - s*5) | = 4.66856419 |
(s*6 - s*5)/(s*7 - s*6) | = 4.66915718 |
(s*7 - s*6)/(s*8 - s*7) | = 4.66919100 |
(s*8 - s*7)/(s*9 - s*8) | = 4.66919947 |
(s*9 - s*8)/(s*10 - s*9) | = 4.66920113 |
(s*10 - s*9)/(s*11 - s*10) | = 4.66920151 |
(s*11 - s*10)/(s*12 - s*11) | = 4.66920159 |
(s*12 - s*11)/(s*13 - s*12) | = 4.66920160 |
(s*13 - s*12)/(s*14 - s*13) | = 4.66920161 |
Continuing, we would find
(s*n - s*n-1)/(s*n+1 - s*n) -> 4.6692016091029...
as n -> infinity. This number is called the Feigenbaum delta constant.
Return to Period-Doubling Scaling and the Feigenbaum Constant.