Virtual Laboratories > Expected Value > 1 2 3 4 5 6 [7]

7. Notes


Books

This chapter contains core topics that are discussed in most books on probability.

External sites

Selected Answers for Section 1

Answer 1.4. Let X denote the score. E(X) = 7/2.

Answer 1.6. Let X denote the score. E(X) = 7/2.

Answer 1.7. E(X) = 3/5.

Answer 1.21. Let Y = X2.

  1. g(y) = (1/4)y -1/2 for 0 < y < 1, g(y) = (1/8)y -1/2 for 1 < y < 9.
  2. E(Y) = 7/3.
  3. E(Y) = 7/3.

Answer 1.22. Let Y = X2.

  1. E(X) = 18 / 5
  2. y 1 4 9 16 25
    P(Y = y) 1/30 2/15 3/20 4/15 5/12
  3. E(Y) = 83 / 5
  4. E(Y) = 83 / 5

Answer 1.23.

  1. E(1/X) = 2
  2. E(X1/2) = 48 / 63

Answer 1.24.

  1. E(X) = 5 / 12
  2. E(Y) = 3 / 4
  3. E(X2Y) = 7 / 36
  4. E(X2 + Y2) = 5 / 6.

Answer 1.32.

  1. E(Y) = 7
  2. E(Z) = 49 / 4
  3. E(U) = 101 / 36
  4. E(V) = 19 / 4

Answer 1.33. E(3X + 4Y - 7) = 0

Answer 1.34. E[(3X - 4)(2Y + 7)] = 33

Answer 1.35. Let N denote the number of ducks killed.

E(N) = 10[1 - (9/10)5] = 4.095

Answer 1.36. E(Xn) = (bn + 1 - an + 1) / [(n + 1)(b - a)]

Answer 1.37. E(Xn) = 12[1 / (n + 3) - 1 / (n + 4)]

Answer 1.44.

  1. E(X) = 1 / r
  2. exp(-rt) < 1 / rt for t > 0

Answer 1.45.

  1. E(Y) = 1 / p
  2. (1 - p)n - 1 < 1 / np for n = 1, 2, ...

Answer 1.50.

  1. E(X) = a / (a - 1)
  2. E(1/X) = a / (a + 1)
  3. a / (a + 1) > (a - 1) / a

Answer 1.53.

  1. E(X2 + Y2) = 5 / 6
  2. [E(X)]2 + [E(Y)]2 = 53 / 72

Answer 1.54. E(X | X > t) = t + 1 / r.

Answer 1.56. E(Y | Y is even) = 2(1 - p)2 / [p(2 - p)3]

Answer 1.57. E(XY | Y > X) = 1/3.

Selected Answers for Section 2

Answer 2.9. Let X denote the die score.

  1. E(X) = 7/2
  2. var(X) = 35/12
  3. sd(X) ~ 1.708

Answer 2.11. Let X denote the die score.

  1. E(X) = 7/2
  2. var(X) = 15/4
  3. sd(X) ~ 1.936

Answer 2.22.

  1. var(3X - 2) = 36
  2. E(X2) = 29

Answer 2.24. z = 8.53.

Answer 2.27. E(Y) = 4/3, sd(Y) = 2/3, k = 2

  1. P[|Y - E(Y)| k sd(Y)] = 1/16.
  2. 1 / k2 = 1/4

Answer 2.28. E(X) = 1 / r, sd(Y) = 1 / r.

  1. P[|X - E(X)| k sd(Y)] = exp[-(k + 1)]
  2. 1 / k2.

Answer 2.32.

  1. E(X) = 1/2, var(X) = 1/20, skew(X) = 0, kurt(X) = 15/7
  2. E(X) = 3/5, var(X) = 1/25, skew(X) = -2/7, kurt(X) = 33/14
  3. E(X) = 2/5, var(X) = 1/25, skew(X) = 02/7, kurt(X) = 33/14

Answer 2.38.

  1. ||X||k = 1 / (k + 1)1/k.
  2. 1

Answer 2.39.

  1. ||X||k = [a / (a - k)]1/k if k < a, ||X||k = infinity if k >= a.
  2. infinity

Answer 2.40.

  1. ||X + Y||k = [(2k+3 - 2) / (k + 3)(k + 2)]1/k.
  2. ||X||k + ||Y||k = 2[1 / (k + 2) + 1 / 2(k + 1)]1/k.

Answer 2.48.

  1. When p < 1/2, the minimum of E[|I - t|] is p and occurs at t = 0.
  2. When p = 1/2, the minimum of E[|I - t|] is 1/2 and occurs for t in [0, 1].
  3. When p > 1/2, the minimum of E[|I - t|] is 1 - p and occurs at t = 1.

Selected Answers for Section 3

Answer 3.14.

  1. cov(X1, X2) = 0, cor(X1, X2) = 0
  2. cov(X1, Y) = 35 / 12, cor(X1, Y) = 2-1/2 ~ 0.7071.
  3. cov(X1, U) = 35 / 24, cor(X1, U) ~ 0.6082
  4. cov(U, V) = 1369 / 1296, cor(U, V) = 1369 / 2555 ~ 0.5358
  5. cov(U, Y) = 35 / 12, cor(U, Y) = 0.8601

Answer 3.15. cov(2X - 5, 4Y + 2) = 24.

Answer 3.16.

  1. cov(X, Y) = -1 / 144.
  2. cor(X, Y) = -1 / 11 ~ 0.0909

Answer 3.17.

  1. cov(X, Y) = 1 / 48.
  2. cor(X, Y) ~ 0.4402

Answer 3.18.

  1. cov(X, Y) = 0.
  2. cor(X, Y) = 0.

Answer 3.19.

  1. cov(X, Y) = 5 / 336
  2. cor(X, Y) ~ 0.0.5423

Answer 3.24. var(2X + 3Y - 7) = 83

Answer 3.25. var(3X - 4Y + 5) = 182

Answer 3.27. Let Y denote the sum of the dice scores.

  1. E(Y) = 7n / 2.
  2. var(Y) = 35n / 12.

Answer 3.32.

  1. cov(A, B) = 1 / 24.
  2. cor(A, B) ~ 0.1768.

Answer 3.33.

  1. Y* = (7 - X) / 11
  2. X* = (7 - Y) / 11
  3. cor2(X, Y) = 1 / 121 = 0.0083

Answer 3.40.

  1. Y* = (26 + 15X) / 43
  2. X* = 5Y / 9
  3. cor2(X, Y) = 25 / 129 ~ 0.1938

Answer 3.41.

  1. Y* = 2 / 3
  2. X* = 3 / 4
  3. cor2(X, Y) = 0

Answer 3.42.

  1. Y* = (30 + 20X) / 51
  2. X* = 3Y / 4
  3. cor2(X, Y) = 5 / 17 ~ 0.2941

Answer 3.43.

  1. Y* = 7 / 2 + X1.
  2. U* = 7 / 9 + X1 / 2.
  3. V* = 49 / 19 + X1 / 2.

Answer 3.53. <X, Y> = 1/3

  1. ||X||2 ||Y||2 = 5 / 12.
  2. ||X||3 ||Y||3/2 ~ 0.4248.

Selected Answers for Section 4

Answer 4.32.

  1. M(s, t) = 2[exp(s + t) - 1] / [s(s + t)] - 2[exp(t) - 1] / (st) for s, t <> 0
  2. MX(s) = 2[exp(s) / s2 - 1 / s2 - 1 / s] for s <> 0.
  3. MY(t) = 2[t exp(t) - exp(t) + 1] / t2 for t <>0.
  4. MX + Y(t) = [exp(2t) - 1] / t2 - 2[exp(t) - 1] / t2 for t <>0.

Answer 4.33.

  1. M(s, t) = {exp(s + t)[-2st + s + t] + exp(t)[st - s - t] + exp(s)[st - s - t] + s + t} / (s2 t2) for s, t <> 0.
  2. MX(s) = [3s exp(s) - 2 exp(s) - s + 2] / (2s2) for s <> 0.
  3. MY(t) = [3t exp(t) - 2 exp(t) - t + 2] / (2t2) for t <> 0.
  4. MX + Y(t) = 2[exp(2t) (-t + 1) + exp(t)(t - 2) + 1] / t3 for t <>0.

Selected Answers for Section 5

Answer 5.13. E(Y | X) = 0.

Answer 5.15. E(Y | X) = (X + 6) / 2.

Answer 5.17.

  1. E(Y | X) = (3X + 2) / (6X + 3)
  2. E(X | Y) = (3Y + 2) / (6Y + 3)

Answer 5.18.

  1. E(Y | X) = (5X2 + 5X + 2) / (9X + 3)
  2. E(X | Y) = 5Y / 9

Answer 5.19.

  1. E(Y | X) = 2 / 3.
  2. E(X | Y) = 3 / 4.

Answer 5.20.

  1. E(Y | X) = 2(X2 + X + 1) / 3(X + 1)
  2. E(X | Y) = 3Y / 4.

Answer 5.21.

  1. E(Y | X1) = 7 / 2 + X1.
  2. x 1 2 3 4 5 6
    E(U | X1 = x) 1 11/6 5/2 3 10/3 7/2
  3. u 1 2 3 4 5 6
    E(Y | U = u) 52/11 56/9 54/7 46/5 32/3 12
  4. E(X2 | X1) = 7/2

Answer 5.22. E[exp(X) Y - sin(X) Z | X] = X3 exp(X) - sin(X) / (1 + X2)

Answer 5.24. P(H) = 1/2

Answer 5.28.

  1. Y* = (7 - X) / 11.
  2. E(Y | X) = (3X + 2) / (6X + 3)

Answer 5.29.

  1. Y* = (26 + 15X) / 43
  2. E(Y | X) = (5X2 + 5X + 2) / (9X + 3)

Answer 5.30.

  1. Y* = 2 / 3
  2. E(Y | X) = 2 / 3.

Answer 5.31.

  1. Y* = (30 + 20X) / 51
  2. E(Y | X) = 2(X2 + X + 1) / 3(X + 1)

Answer 5.34.

  1. var(Y) = 11 / 144 ~ 0.0764.
  2. var(Y)[1 - cor2(X, Y)] = 5 / 66 ~ 0.0758.
  3. var(Y) - var[E(Y | X)] = 1 / 12 - ln(3) / 144 ~ 0.0757

Answer 5.35.

  1. var(Y) = 3 / 80 ~ 0.0375
  2. var(Y)[1 - cor2(X, Y)] = 13 / 430 ~ 0.0302
  3. var(Y) - var[E(Y | X)] = 1837 / 21870 - 512 ln(2) / 6561 ~ 0.0299

Answer 5.36.

  1. var(Y) = 1 / 18
  2. var(Y)[1 - cor2(X, Y)] = 1 / 18
  3. var(Y) - var[E(Y | X)] = 1 / 18

Answer 5.37.

  1. var(Y) = 5 / 252 ~ 0.0198
  2. var(Y)[1 - cor2(X, Y)] = 5 / 357 ~ 0.0140
  3. var(Y) - var[E(Y | X)] = 292 / 63 - 20 ln(2) / 3 ~ 0.0139

Answer 5.38.

  1. E(Y | X) = X / 2.
  2. var(Y | X) = X2 / 12.
  3. var(Y) = 7 / 144.

Answer 5.44.

  1. Given N, X has the binomial distribution with parameters N and p = 1/2.
  2. E(X | N) = N / 2.
  3. var(X | N) = N / 4.
  4. E(X) = 7 / 4
  5. var(X) = 7 / 3.

Answer 5.46. Let Y denote the amount of money spent during the hour.

  1. E(Y) = $1000
  2. sd(Y) ~ $30.822

Answer 5.51. Let X denote the die score

  1. E(X) = 7 / 2.
  2. var(X) = 1.8634

Selected Answers for Section 6

Answer 6.17.

  1. E(X, Y) 7 / 12
    7 / 12
  2. VC(X, Y) 11 / 144 -1 / 144
    -1 / 144 11 / 144

Answer 6.18.

  1. E(X, Y) 5 / 12
    3 / 4
  2. VC(X, Y) 43 / 720 1 / 48
    1 / 48 3 / 80

Answer 6.19.

  1. E(X, Y) 3 / 4
    2 / 3
  2. VC(X, Y) = 3 / 80 0
    0 1 / 18

Answer 6.20.

  1. E(X, Y) 5 / 8
    5 / 6
  2. VC(X, Y) 17 / 448 5 / 336
    5 / 336 5 / 252

Answer 6.21.

  1. E(X, Y, Z) 1 / 4
    1 / 2
    3 / 4
  2. VC(X, Y, Z) 3 / 80 1 / 40 1 / 80
    1 / 40 1 / 20 1 / 40
    1 / 80 1 / 40 3 / 80

Answer 6.22.

  1. E(X, Y) 1 / 2
    1 / 4
  2. VC(X, Y) 1 / 12 1 / 24
    1 / 24 7 / 144