Virtual Laboratories > Games of Chance > 1 2 3 4 5 6 7 [8]
Es muy fácil sinular un dado justo con un número aleatorio. Recuerde que la función "ceiling" ceil(x) da el menor entero que es al menos tan grande como x.
1.
Suponga que U
está uniformemente distribuída en (0, 1) (un número aleatorio). muestre que ceil(6U)
está uniformemente distribuída en {1, 2, 3, 4, 5, 6}.
To see how to simulate a card hand, see the Notes section of Finite Sampling Models. A general method of simulating random variables is based on the quantile function.
2.15. 0.0287
2.16. 3.913 × 10-10
2.17. Ordinal. No.
3.12. 0.2130
4.36. 0.09235
7.3. E(U)
= 0.5319148936, sd(U) = 0.6587832083
k | P(U = k) |
---|---|
0 | 0.5545644253 |
1 | 0.3648450167 |
2 | 0.0748400034 |
3 | 0.0056130003 |
4 | 0.0001369024 |
5 | 0.0000006519 |
7.4. E(U)
= 0.5102040816, sd(U) = 0.6480462207
k | P(U = k) |
---|---|
0 | 0.5695196981 |
1 | 0.3559498113 |
2 | 0.0694536217 |
3 | 0.0049609730 |
4 | 0.0001153715 |
5 | 0.0000005244 |
7.5. E(U)
= 1.042553191, sd(U) = 0.8783776109
k | P(U = k) |
---|---|
0 | 0.2964400642 |
1 | 0.4272224454 |
2 | 0.2197144005 |
3 | 0.0508598149 |
4 | 0.0054983583 |
5 | 0.0002604486 |
6 | 0.0000044521 |
7 | 0.0000000159 |
7.8.
P(I = i, U = k) | i | ||
---|---|---|---|
0 | 1 | ||
k | 0 | 0.5340250022 | 0.0205394232 |
1 | 0.3513322383 | 0.0135127784 | |
2 | 0.0720681514 | 0.0027718520 | |
3 | 0.0054051114 | 0.0002078889 | |
4 | 0.0001318320 | 0.0000050705 | |
5 | 0.0000006278 | 0.0000000241 |
7.9.
P(I = i, U = k) | i | ||
---|---|---|---|
0 | 1 | ||
k | 0 | 0.5559597053 | 0.0135599928 |
1 | 0.3474748158 | 0.0084749955 | |
2 | 0.0677999641 | 0.0016536577 | |
3 | 0.0048428546 | 0.0001181184 | |
4 | 0.0001126245 | 0.0000027469 | |
5 | 0.0000005119 | 0.0000000125 |
In the following keno exercises, let V denote the random payoff on a unit bet.
7.13.
Pick m = 1. E(V) = 0.75, sd(V) = 1.299038106
v | P(V = v) |
---|---|
0 | 0.75 |
3 | 0.25 |
7.14.
Pick m = 2. E(V) = 0.7215189873, sd(V) = 2.852654587
v | P(V = v) |
---|---|
0 | 0.9398734177 |
12 | 0.0601265822 |
7.15.
Pick m = 3. E(V) = 0.7353943525, sd(V) = 5.025285956
v | P(V = v) |
---|---|
0 | 0.8473709834 |
1 | 0.1387536514 |
43 | 0.0138753651 |
7.16.
Pick m = 4. E(V)
= 0.7406201394, sd(V) = 7.198935911
v | P(V = v) |
---|---|
0 | 0.7410532505 |
1 | 0.2126354658 |
3 | 0.0432478914 |
130 | 0.0030633923 |
7.17.
Pick m = 5. E(V)
= 0.7207981892, sd(V) = 20.33532453
v | P(V = v) |
---|---|
0 | 0.9033276850 |
1 | 0.0839350523 |
10 | 0.0120923380 |
800 | 0.0006449247 |
7.18.
Pick m = 6. E(V)
= 0.7315342885, sd(V) = 17.83831647
v | P(V = v) |
---|---|
0 | 0.8384179112 |
1 | 0.1298195475 |
4 | 0.0285379178 |
95 | 0.0030956385 |
1500 | 0.0001289849 |
7.19.
Pick m = 7. E(V)
= 0.7196008747, sd(V) = 40.69860455
v | P(V = k) |
---|---|
0 | 0.9384140492 |
1 | 0.0521909668 |
25 | 0.0086385048 |
350 | 0.0007320767 |
8000 | 0.0000244026 |
7.20.
Pick m = 8. E(V)
= 0.7270517606, sd(V) = 55.64771986
v | P(V = v) |
---|---|
0 | 0.9791658999 |
9 | 0.0183025856 |
90 | 0.0023667137 |
1500 | 0.0001604552 |
25,000 | 0.0000043457 |
7.21.
Pick m = 9. E(V)
= 0.7486374371, sd(V) = 48.91644787
v | P(V = v) |
---|---|
0 | 0.9610539663 |
4 | 0.0326014806 |
50 | 0.0057195580 |
280 | 0.0005916784 |
4000 | 0.0000325925 |
50,000 | 0.0000007243 |
7.22.
Pick m = 10. E(V)
= 0.7228896221, sd(V) = 38.10367609
v | P(V = v) |
---|---|
0 | 0.9353401224 |
1 | 0.0514276877 |
22 | 0.0114793946 |
150 | 0.0016111431 |
1000 | 0.0001354194 |
5000 | 0.0000061206 |
100,000 | 0.0000001122 |
7.23.
Pick m = 11. E(V)
= 0.7138083347, sd(V) = 32.99373346
v | P(V = k) |
---|---|
0 | 0.9757475913 |
8 | 0.0202037345 |
80 | 0.0036078097 |
400 | 0.0004114169 |
2500 | 0.0000283736 |
25,000 | 0.0000010580 |
100,000 | 0.0000000160 |
7.24.
Pick m = 12. E(V)
= .7167721544, sd(V) = 20.12030014
v | P(V = k) |
---|---|
0 | 0.9596431653 |
5 | 0.0322088520 |
32 | 0.0070273859 |
200 | 0.0010195984 |
1000 | 0.0000954010 |
5000 | 0.0000054280 |
25,000 | 0.0000001673 |
100,000 | 0.0000000021 |
7.25.
Pick m = 13. E(V)
= 0.7216651326, sd(V) = 22.68311303
v | P(V = k) |
---|---|
0 | 0.9213238456 |
1 | 0.0638969375 |
20 | 0.0123151493 |
80 | 0.0021831401 |
600 | 0.0002598976 |
3500 | 0.0000200623 |
10,000 | 0.0000009434 |
50,000 | 0.0000000240 |
100,000 | 0.0000000002 |
7.26.
Pick m = 14. E(V)
= 0.7194160496, sd(V) = 21.98977077
v | P(V = k) |
---|---|
0 | 0.898036333063 |
1 | 0.077258807301 |
9 | 0.019851285448 |
42 | 0.004181636518 |
310 | 0.000608238039 |
1100 | 0.000059737665 |
8000 | 0.000003811015 |
25,000 | 0.000000147841 |
50,000 | 0.000000003084 |
100,000 | 0.000000000026 |
7.27.
Pick m = 15. E(V)
= 0.7144017020, sd(V) = 24.31901706
v | P(V = k) |
---|---|
0 | 0.95333046038902 |
1 | 0.00801614417729 |
10 | 0.02988971956684 |
25 | 0.00733144064847 |
100 | 0.00126716258122 |
300 | 0.00015205950975 |
2800 | 0.00001234249267 |
25,000 | 0.00000064960488 |
50,000 | 0.00000002067708 |
100,000 | 0.00000000035046 |
100,000 | 0.00000000000234 |