Virtual Laboratories > Games of Chance > 1 2 3 4 5 6 7 [8]
Es muy fácil sinular un dado justo con un número aleatorio. Recuerde que la función "ceiling" ceil(x) da el menor entero que es al menos tan grande como x.
1.
Suponga que U
está uniformemente distribuída en (0, 1) (un número aleatorio). muestre que ceil(6U)
está uniformemente distribuída en {1, 2, 3, 4, 5, 6}.
To see how to simulate a card hand, see the Notes section of Finite Sampling Models. A general method of simulating random variables is based on the quantile function.
2.15. 0.0287
2.16. 3.913 × 10-10
2.17. Ordinal. No.
3.12. 0.2130
4.36. 0.09235
7.3. E(U)
= 0.5319148936, sd(U) = 0.6587832083
| k | P(U = k) |
|---|---|
| 0 | 0.5545644253 |
| 1 | 0.3648450167 |
| 2 | 0.0748400034 |
| 3 | 0.0056130003 |
| 4 | 0.0001369024 |
| 5 | 0.0000006519 |
7.4. E(U)
= 0.5102040816, sd(U) = 0.6480462207
| k | P(U = k) |
|---|---|
| 0 | 0.5695196981 |
| 1 | 0.3559498113 |
| 2 | 0.0694536217 |
| 3 | 0.0049609730 |
| 4 | 0.0001153715 |
| 5 | 0.0000005244 |
7.5. E(U)
= 1.042553191, sd(U) = 0.8783776109
| k | P(U = k) |
|---|---|
| 0 | 0.2964400642 |
| 1 | 0.4272224454 |
| 2 | 0.2197144005 |
| 3 | 0.0508598149 |
| 4 | 0.0054983583 |
| 5 | 0.0002604486 |
| 6 | 0.0000044521 |
| 7 | 0.0000000159 |
7.8.
| P(I = i, U = k) | i | ||
|---|---|---|---|
| 0 | 1 | ||
| k | 0 | 0.5340250022 | 0.0205394232 |
| 1 | 0.3513322383 | 0.0135127784 | |
| 2 | 0.0720681514 | 0.0027718520 | |
| 3 | 0.0054051114 | 0.0002078889 | |
| 4 | 0.0001318320 | 0.0000050705 | |
| 5 | 0.0000006278 | 0.0000000241 | |
7.9.
| P(I = i, U = k) | i | ||
|---|---|---|---|
| 0 | 1 | ||
| k | 0 | 0.5559597053 | 0.0135599928 |
| 1 | 0.3474748158 | 0.0084749955 | |
| 2 | 0.0677999641 | 0.0016536577 | |
| 3 | 0.0048428546 | 0.0001181184 | |
| 4 | 0.0001126245 | 0.0000027469 | |
| 5 | 0.0000005119 | 0.0000000125 | |
In the following keno exercises, let V denote the random payoff on a unit bet.
7.13.
Pick m = 1. E(V) = 0.75, sd(V) = 1.299038106
| v | P(V = v) |
|---|---|
| 0 | 0.75 |
| 3 | 0.25 |
7.14.
Pick m = 2. E(V) = 0.7215189873, sd(V) = 2.852654587
| v | P(V = v) |
|---|---|
| 0 | 0.9398734177 |
| 12 | 0.0601265822 |
7.15.
Pick m = 3. E(V) = 0.7353943525, sd(V) = 5.025285956
| v | P(V = v) |
|---|---|
| 0 | 0.8473709834 |
| 1 | 0.1387536514 |
| 43 | 0.0138753651 |
7.16.
Pick m = 4. E(V)
= 0.7406201394, sd(V) = 7.198935911
| v | P(V = v) |
|---|---|
| 0 | 0.7410532505 |
| 1 | 0.2126354658 |
| 3 | 0.0432478914 |
| 130 | 0.0030633923 |
7.17.
Pick m = 5. E(V)
= 0.7207981892, sd(V) = 20.33532453
| v | P(V = v) |
|---|---|
| 0 | 0.9033276850 |
| 1 | 0.0839350523 |
| 10 | 0.0120923380 |
| 800 | 0.0006449247 |
7.18.
Pick m = 6. E(V)
= 0.7315342885, sd(V) = 17.83831647
| v | P(V = v) |
|---|---|
| 0 | 0.8384179112 |
| 1 | 0.1298195475 |
| 4 | 0.0285379178 |
| 95 | 0.0030956385 |
| 1500 | 0.0001289849 |
7.19.
Pick m = 7. E(V)
= 0.7196008747, sd(V) = 40.69860455
| v | P(V = k) |
|---|---|
| 0 | 0.9384140492 |
| 1 | 0.0521909668 |
| 25 | 0.0086385048 |
| 350 | 0.0007320767 |
| 8000 | 0.0000244026 |
7.20.
Pick m = 8. E(V)
= 0.7270517606, sd(V) = 55.64771986
| v | P(V = v) |
|---|---|
| 0 | 0.9791658999 |
| 9 | 0.0183025856 |
| 90 | 0.0023667137 |
| 1500 | 0.0001604552 |
| 25,000 | 0.0000043457 |
7.21.
Pick m = 9. E(V)
= 0.7486374371, sd(V) = 48.91644787
| v | P(V = v) |
|---|---|
| 0 | 0.9610539663 |
| 4 | 0.0326014806 |
| 50 | 0.0057195580 |
| 280 | 0.0005916784 |
| 4000 | 0.0000325925 |
| 50,000 | 0.0000007243 |
7.22.
Pick m = 10. E(V)
= 0.7228896221, sd(V) = 38.10367609
| v | P(V = v) |
|---|---|
| 0 | 0.9353401224 |
| 1 | 0.0514276877 |
| 22 | 0.0114793946 |
| 150 | 0.0016111431 |
| 1000 | 0.0001354194 |
| 5000 | 0.0000061206 |
| 100,000 | 0.0000001122 |
7.23.
Pick m = 11. E(V)
= 0.7138083347, sd(V) = 32.99373346
| v | P(V = k) |
|---|---|
| 0 | 0.9757475913 |
| 8 | 0.0202037345 |
| 80 | 0.0036078097 |
| 400 | 0.0004114169 |
| 2500 | 0.0000283736 |
| 25,000 | 0.0000010580 |
| 100,000 | 0.0000000160 |
7.24.
Pick m = 12. E(V)
= .7167721544, sd(V) = 20.12030014
| v | P(V = k) |
|---|---|
| 0 | 0.9596431653 |
| 5 | 0.0322088520 |
| 32 | 0.0070273859 |
| 200 | 0.0010195984 |
| 1000 | 0.0000954010 |
| 5000 | 0.0000054280 |
| 25,000 | 0.0000001673 |
| 100,000 | 0.0000000021 |
7.25.
Pick m = 13. E(V)
= 0.7216651326, sd(V) = 22.68311303
| v | P(V = k) |
|---|---|
| 0 | 0.9213238456 |
| 1 | 0.0638969375 |
| 20 | 0.0123151493 |
| 80 | 0.0021831401 |
| 600 | 0.0002598976 |
| 3500 | 0.0000200623 |
| 10,000 | 0.0000009434 |
| 50,000 | 0.0000000240 |
| 100,000 | 0.0000000002 |
7.26.
Pick m = 14. E(V)
= 0.7194160496, sd(V) = 21.98977077
| v | P(V = k) |
|---|---|
| 0 | 0.898036333063 |
| 1 | 0.077258807301 |
| 9 | 0.019851285448 |
| 42 | 0.004181636518 |
| 310 | 0.000608238039 |
| 1100 | 0.000059737665 |
| 8000 | 0.000003811015 |
| 25,000 | 0.000000147841 |
| 50,000 | 0.000000003084 |
| 100,000 | 0.000000000026 |
7.27.
Pick m = 15. E(V)
= 0.7144017020, sd(V) = 24.31901706
| v | P(V = k) |
|---|---|
| 0 | 0.95333046038902 |
| 1 | 0.00801614417729 |
| 10 | 0.02988971956684 |
| 25 | 0.00733144064847 |
| 100 | 0.00126716258122 |
| 300 | 0.00015205950975 |
| 2800 | 0.00001234249267 |
| 25,000 | 0.00000064960488 |
| 50,000 | 0.00000002067708 |
| 100,000 | 0.00000000035046 |
| 100,000 | 0.00000000000234 |