Laboratorio Virtual > Distribuciones > 1 2 3 4 5 6 7 8 [9]
Este capítulo contiene temas que son tratados en cualquier libro de probabilidad.
1.2.
1.8. Si f(y) = P(Y = y) = C(30, y) C(20,
5 - y) / C(50, 5);
1.12. Si f(k)
= P(X = k) = C(5, x) (0.4)k
(0.6)5 - k para k = 0, 1, 2, 3, 4, 5.
1.15.
1.17. P(I
= i1 i2 ... in) = (1 /
6)(1 / 2)n para n = 1, 2, 3, 4, 5, 6 y i1,
i2, ..., in in {0, 1}.
1.19.
1.20.
1.21.
1.22.
1.26. P(X
= x | X > 0) = x2 / 5 para x = 1, 2.
1.27. P(U
= 2 | Y = 8) = 2 / 5, P(U = 3 | Y = 8) = 2 / 5, P(U
= 4 | Y = 8) = 1 / 5.
1.31. Si N
denota el valor del dadp y X el numero de caras.
1.33. Si V
denota la probabilidad de caras de la moneda seleccionada y X el
numero de caras.
1.34.Si X
denota el valor del dado
P(X = x) = 5 / 24 para x = 1, 6; P(X = x) = 7 / 48 para x = 2, 3, 4, 5.
1.36. Si X
denota the line number y D el evento de que el item es
defectuoso.
1.37. Las
tablas dan funciones de densidades empiricas densidades empiricas (relative frequency)
r | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P(R = r) | 1/30 | 3/30 | 2/30 | 2/30 | 4/30 | 5/30 | 2/30 | 1/30 | 3/30 | 3/30 | 3/30 | 1/30 |
n | 50 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |
---|---|---|---|---|---|---|---|---|---|---|
P(N = n) | 1/30 | 1/30 | 1/30 | 4/30 | 4/30 | 3/30 | 9/30 | 3/30 | 2/30 | 2/30 |
r | 3 | 4 | 6 | 8 | 9 | 11 | 12 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|
P(R = r | N > 57) | 1/16 | 1/16 | 1/16 | 3/16 | 3/16 | 1/16 | 1/16 | 3/16 | 2/16 |
1.38.
Gender G: 0 (femenino), 1 (masculino). Especies S: 0 (tredecula), 1 (tredecim),
2 (tredecassini). Las tablas dan funciones de densidades empiricas densidades
empiricas (relative frequency
functions).
i | 0 | 1 |
---|---|---|
P(G = i) | 59 / 104 | 45 / 104 |
j | 0 | 1 | 2 |
---|---|---|---|
P(S = j) | 44 / 104 | 6 / 104 | 54 / 104 |
P(G = i, S = j) | i | ||
---|---|---|---|
0 | 1 | ||
j | 0 | 16 / 104 | 28 / 104 |
1 | 3 / 104 | 3 / 104 | |
2 | 40 / 104 | 14 / 104 |
i | 0 | 1 |
---|---|---|
P(G = i | W > 0.2 | 31 / 73 | 42 / 73 |
2.4.
P(T > 2) = exp(-1) = 0.3679
2.5.
2.8. P(T
> 3) = (17 / 2) exp(-3) ~ 0.4232.
2.11.
2.13.
2.17.
2.18.
2.19.
2.20.
2.21.
2.23. P(X
> 0, Y > 0) = 1 / 4.
2.25.
P(X > 0, Y > 0) = 1 / 4.
2.27.
P(X > 0, Y > 0) = 1 / 4.
2.29. P(X
< Y < Z) = 1 / 6.
2.30.
2.33. f(x,
y | X < 1 / 2, Y < 1 / 2) = 8(x + y), 0
< x < 1 / 2, 0 < y < 1 / 2.
2.34.
Densidades empiricas, basadas en simples particiones del rango de peso y
longitud, son dadas en las siguientes tablas:
BW | (0, 0.1] | (0.1, 0.2] | (0.2, 0.3] | (0.3, 0.4] |
---|---|---|---|---|
Density | 0.8654 | 5.8654 | 3.0769 | 0.1923 |
BL | (15, 20] | (20, 25] | (25, 30] | (30, 35] |
---|---|---|---|---|
Density | 0.0058 | 0.1577 | 0.0346 | 0.0019 |
BW | (0, 0.1] | (0.1, 0.2] | (0.2, 0.3] | (0.3, 0.4] |
---|---|---|---|---|
Density (G = 0) |
0.3390 | 4.4068 | 5.0847 | 0.1695 |
2.36.
2.37.
3.6.
P(X > 6) = 13 / 40.
3.7. P(Y
> X) = 4 / 9.
3.9.
3.13.
3.14.
4.6. Las
densidades conjuntas y marginales son dadas debajo, Y y Z
son dependientes.
P(Y = y, Z = z) | y | P(Z = z) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 11 | 12 | |||
z | -5 | 0 | 0 | 0 | 0 | 0 | 1/36 | 0 | 0 | 0 | 0 | 0 | 1/36 |
-4 | 0 | 0 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 0 | 0 | 2/36 | |
-3 | 0 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 0 | 3/36 | |
-2 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 4/36 | |
-1 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 5/36 | |
0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 6/36 | |
1 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 5/36 | |
2 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 4/36 | |
3 | 0 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 0 | 3/36 | |
4 | 0 | 0 | 0 | 0 | 1/36 | 0 | 1/36 | 0 | 0 | 0 | 0 | 2/36 | |
5 | 0 | 0 | 0 | 0 | 0 | 1/36 | 0 | 0 | 0 | 0 | 0 | 1/36 | |
P(Y = y) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 | 1 |
4.7. La
densidad conjunta y marginal son dadas debajo,U y V son
dependientes..
P(U = u, V = v) | u | P(V = v) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
v | 1 | 1/36 | 0 | 0 | 0 | 0 | 0 | 1/36 |
2 | 2/36 | 1/36 | 0 | 0 | 0 | 0 | 3/36 | |
3 | 2/36 | 2/36 | 1/36 | 0 | 0 | 0 | 5/36 | |
4 | 2/36 | 2/36 | 2/36 | 1/36 | 0 | 0 | 7/36 | |
5 | 2/36 | 2/36 | 2/36 | 2/36 | 1/36 | 0 | 9/36 | |
6 | 2/36 | 2/36 | 2/36 | 2/36 | 2/36 | 1/36 | 11/36 | |
P(U = u) | 11/36 | 9/36 | 7/36 | 5/36 | 3/36 | 1/36 | 1 |
4.8.
4.9.
4.10.
4.11.
4.12.
4.16.
4.18.
4.20.
4.22.
4.23.
4.25.
4.26.
4.27. Las
densidades empiricas conjunta y marginal son dadas en las siguientes tablas. Gender
y especies son dependientes (compare la densidad conjunta con el producto de las
densidades marginales).
P(G = i, S = j) | i | P(S = j) | ||
---|---|---|---|---|
0 | 1 | |||
j | 0 | 16 / 104 | 28 / 104 | 44 / 104 |
1 | 3 / 104 | 3 / 104 | 6 / 104 | |
2 | 40 / 104 | 14 / 104 | 56 / 104 | |
P(G = i) | 59 / 104 | 45 / 104 | 1 |
4.28. Las
densidades empiricas conjuntas y marginales, basadas en particiones del rango
del peso y las alturas, son dadas en las siguientes tablas. El peso y la altura
son practicamente dependientes.
Density (BW, BL) | BW | Density BL | ||||
---|---|---|---|---|---|---|
(0, 0.1] | (0.1, 0.2] | (0.2, 0.3] | (0.3, 0.4] | |||
BL | (15, 20] | 0 | 0.0385 | 0.0192 | 0 | 0.0058 |
(20, 25] | 0.1731 | 0.9808 | 0.4231 | 0 | 0.1577 | |
(25, 30] | 0 | 0.1538 | 0.1731 | 0.0192 | 0.0346 | |
(30, 35] | 0 | 0 | 0 | 0.0192 | 0.0019 | |
Density BW | 0.8654 | 5.8654 | 3.0769 | 0.1923 |
4.29. Las
densidades empiricas conjuntas y marginales, basadas en particiones del rango
del peso y las alturas, son dadas en las siguientes tablas. El peso y la altura
son practicamente dependientes.
Density (BW, G) | BW | Density G | ||||
---|---|---|---|---|---|---|
(0, 0.1] | (0.1, 0.2] | (0.2, 0.3] | (0.3, 0.4] | |||
G | 0 | 0.1923 | 2.5000 | 2.8846 | 0.0962 | 0.5673 |
1 | 0.6731 | 3.3654 | 0.1923 | 0.0962 | 0.4327 | |
Density BW | 0.8654 | 5.8654 | 3.0769 | 0.1923 |
5.9. Las
densidades condicionales de U dados los diferentes valores de V
se hallan la siguiente tabla.
P(U = u | V = v) | u | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
v | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 2/3 | 1/3 | 0 | 0 | 0 | 0 | |
3 | 2/5 | 2/5 | 1/5 | 0 | 0 | 0 | |
4 | 2/7 | 2/7 | 2/7 | 1/7 | 0 | 0 | |
5 | 2/9 | 2/9 | 2/9 | 2/9 | 1/9 | 0 | |
6 | 2/11 | 2/11 | 2/11 | 2/11 | 2/11 | 1/11 |
5.10. Las
densidades conjuntas y marginales son dadas en la primer tabla. Las densidades
condicionales de N dados los diferentes valores de X se hallan en la segunda
tabla.
P(N = n, X = k) | n | P(X = k) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
k | 0 | 1/12 | 1/24 | 1/48 | 1/96 | 1/192 | 1/384 | 21/128 |
1 | 1/12 | 1/12 | 1/16 | 1/24 | 5/192 | 1/64 | 5/16 | |
2 | 0 | 1/24 | 1/16 | 1/16 | 5/96 | 5/128 | 33/128 | |
3 | 0 | 0 | 1/48 | 1/24 | 5/96 | 5/96 | 1/6 | |
4 | 0 | 0 | 0 | 1/96 | 5/192 | 5/128 | 29/384 | |
5 | 0 | 0 | 0 | 0 | 1/192 | 1/64 | 1/48 | |
6 | 0 | 0 | 0 | 0 | 0 | 1/384 | 1/384 | |
P(N = n) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1 |
P(N = n | X = k) | n | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
k | 0 | 32/63 | 16/63 | 8/63 | 4/63 | 2/63 | 1/63 |
1 | 16/60 | 16/60 | 12/60 | 8/60 | 5/60 | 3/60 | |
2 | 0 | 16/99 | 24/99 | 24/99 | 20/99 | 15/99 | |
3 | 0 | 0 | 2/16 | 4/16 | 5/16 | 5/16 | |
4 | 0 | 0 | 0 | 4/29 | 10/29 | 15/29 | |
5 | 0 | 0 | 0 | 0 | 1/4 | 3/4 | |
6 | 0 | 0 | 0 | 0 | 0 | 1 |
5.12. Las
densidades conjuntas y marginales son dadas en la primer tabla. Las densidades
condicionales de I dados los diferentes valores de X se hallan en la segunda
tabla.
P(I = i, X = k) | k | P(I = i) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
i | 0 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/2 |
1 | 1/8 | 1/16 | 1/16 | 1/16 | 1/16 | 1/8 | 1/2 | |
P(X = k) | 5/24 | 7/48 | 7/48 | 7/48 | 7/48 | 5/24 | 1 |
P(I = i | X = k) | k | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
i | 0 | 2/5 | 4/7 | 4/7 | 4/7 | 4/7 | 2/5 |
1 | 3/5 | 3/7 | 3/7 | 3/7 | 3/7 | 3/5 |
5.14. La
densidad conjunta de (V, X) y la densidad marginal de X
se halla en la primer tabla. La distribución condicional de V
dadoas diferentes valores de X se hallan en la segunda tabla.
P(V = p, X = k) | k | P(V = p) | |||
---|---|---|---|---|---|
0 | 1 | 2 | |||
p | 1/2 | 5/48 | 10/48 | 5/48 | 5/12 |
1/3 | 1/27 | 4/27 | 4/27 | 4/12 | |
1 | 0 | 0 | 1/4 | 3/12 | |
P(X = k) | 61/432 | 154/432 | 217/432 | 1 |
P(V = p | X = k) | k | |||
---|---|---|---|---|
0 | 1 | 2 | ||
p | 1/2 | 45/61 | 45/77 | 36/217 |
1/3 | 16/61 | 32/77 | 64/217 | |
1 | 0 | 0 | 108/217 |
5.15. Si N
denota el numero de focos y T el tiempo de vida.
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
P(N = n | T > 1) | 0.6364 | 0.2341 | 0.0861 | 0.0317 | 0.0117 |
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.26.
5.28.
5.30.
5.32.
6.12.
y | (-![]() |
[2, 3) | [3, 4) | [4, 5) | [5, 6) | [6, 7) | [7, 8) | [8, 9) | [9, 10) | [10, 11) | [11, 12) | [12, ![]() |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P(Y ![]() |
0 | 1/36 | 3/36 | 6/36 | 10/36 | 15/36 | 21/36 | 26/36 | 30/36 | 33/36 | 35/36 | 1 |
v | (-![]() |
[1, 2) | [2, 3) | [3, 4) | [4, 5) | [5, 6) | [6, ![]() |
---|---|---|---|---|---|---|---|
P(V ![]() |
0 | 1/36 | 4/36 | 9/36 | 16/36 | 25/36 | 1 |
y | (-![]() |
[6, 7) | [7, 8) | [8, 9) | [9, 10) | [10, ![]() |
---|---|---|---|---|---|---|
P(Y ![]() |
0 | 2/9 | 4/9 | 6/9 | 8/9 | 1 |
6.13.
6.14.
6.15.
6.16.
6.17.
6.19.
6.20.
6.21.
6.27.
6.28.
6.29.
6.30.
6.31.
6.32.
F-1(p) = p / (1 - p) para 0 < p
< 1.
6.33.
6.41.
6.44.
6.45. Si N
denota el numero total de velas. La funcion de distribución empirica de N
es una funcion a tramos; la siguiente tabla da los valores de la funcion en los
puntos de saltos
n | 50 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |
---|---|---|---|---|---|---|---|---|---|---|
P(N ![]() |
1/30 | 2/30 | 3/30 | 7/30 | 11/30 | 14/30 | 23/30 | 36/30 | 28/30 | 1 |
7.4. Vea 4.6 y 4.7
.
7.5. Si Y =
floor(T) y Z = ceil(T).
7.6.
P(I = i, J = j) | i | ||
---|---|---|---|
0 | 1 | ||
j | 0 | 1/8 | 1/4 |
1 | 1/4 | 3/8 |
7.7.
7.8.
7.9.
7.10.
7.15.
X = a + U(b - a) donde U
es un numero aleatorio (uniformemente distribuido en (0, 1)).
7.16.
X = -ln(1 - U) / r donde U es un
numero aleatorio (uniformemente distribuido en (0, 1)).
7.17.
X = 1 / (1 - U)1/a donde U
es un numero aleatorio (uniformemente distribuido en (0, 1)).
7.20. g(y)
= y -1/2 / 4 para 4 < y < 16.
7.21. g(y)
= y8 para -1 < y < 21/3.
7.22. g(y)
= aya - 1 para 0 < y < 1.
7.23.
7.24.
7.28. g(u,
v, w) = 1 / 2 para (u, v, w)
en la region rectangular de R3 con vertices
(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 2).
7.29.
g(u, v) = exp[-(4u + v) / 7] / 7
para -3v
/ 4 < u < 2v, v > 0.
7.33. Si Y = X1 + X2
denota la suma de los puntos
y | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
P(Y = y) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 |
7.35.Si Y = X1 + X2
denota la suma de los puntos.
y | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
P(Y = y) | 1/16 | 1/16 | 5/64 | 3/32 | 7/64 | 3/16 | 7/64 | 3/32 | 6/64 | 1/16 | 1/16 |
7.37. Si Y = X1 + X2
denota la suma de los puntos.
y | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
P(Y = y) | 2/48 | 3/48 | 4/48 | 5/48 | 6/48 | 8/48 | 6/48 | 5/48 | 4/48 | 3/48 | 2/48 |
7.38.Si h
denota la densidad de Z.
7.39..
7.42.
7.43.
7.44. Si U
denota el minimo punto y V el maximo punto.
7.45. Si U
denota el minimo punto y V el maximo punto.
k | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
P(U = k) | 1 - (3/4)n | (3/4)n - (5/8)n | (5/8)n - (1/2)n | (1/2)n - (3/8)n | (3/8)n - (1/4)n | (1/4)n |
k | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
P(V = k) | (1/4)n | (3/8)n - (1/4)n | (1/2)n - (3/8)n | (5/8)n - (1/2)n | (3/4)n - (5/8)n | 1 - (3/4)n |