15. Notes
An incredible variety of special distributions have been studied over the
years, and new ones are constantly being added to the literature. To truly
deserve the adjective special, a distribution should have a certain level
of mathematical elegance and economy, and should arise in interesting and
diverse applications.
Books
The definitive works on special distributions are the books by Johnson and
Kotz and their co-authors:
- Univariate Discrete Distributions, second edition, by Norman L. Johnson,
Samuel Kotz, and Andrienne W. Kemp, published by John Wiley & Sons
(1992).
- Continuous Univariate Distributions, Volume 1, second
edition, by Norman L. Johnson, Samuel Kotz, and N. Balakrishnan, published
by John Wiley & Sons
(1994)
- Continuous Univariate Distributions, Volume 2, second
edition, by Norman L. Johnson, Samuel Kotz, and N. Balakrishnan, published
by John Wiley & Sons
(1995)
- Discrete Multivariate Distributions, by Norman L. Johnson,
Samuel Kotz, and N. Balakrishnan, published by John Wiley & Sons (1997)
- Continuous Multivariate Distributions: Models and Applications,
second edition, by Samuel Kotz, N. Balakrishnan, and Normal L. Johnson,
published by John Wiley & Sons
(2000).
Web Sites
1.6. f(x)
= (1 / b) exp[-(x - a) / b] for x > a.
1.7. f(x)
= 1 / {b
[1 + (x - a)
/ b]2} for x in R.
2.22. Let X
denote the volume of beer in liters
- P(X > 0.48) = 0.9772
- x0.95 = 0.51645
2.23. Let X
denote the radius of the rod and Y the radius of the hole
P(Y - X < 0) = 0.0028.
2.24. Let X
denote the combined weight of the 5 peaces, in ounces.
P(X > 45) = 0.0127.
3.8.
P(X >3) = 17 exp(-3) / 2 ~ 0.4232.
3.9.
- Q1 = 0.287, Q2 = 0.693, Q3
= 1.396, Q3 - Q1 = 1.109.
- Q1 = 0.961, Q2 = 1.678, Q3
= 2.692, Q3 - Q1 = 1.731.
- Q1 = 1.727, Q2 = 2.674, Q3
= 3.920, Q3 - Q1 = 2.193.
3.14.
Let X denote the petal length in centimeters.
- E(X) = 4.
- sd(X) = 2
3.21. Let X
denote the lifetime in hours.
- P(X > 300) = 13 exp(-3) ~ 0.6472.
- E(X) = 400
- sd(X) = 200
3.26.
- P(18 < Y < 25) ~ 0.4095.
- y80 ~ 25.325.
4.5.
- Q1 = 0.102, Q2 = 0.455, Q3
= 1.323, Q3 - Q1 = 1.221.
- Q1 = 0.575, Q2 = 1.386, Q3
= 2.773, Q3 - Q1 = 2.198.
- Q1 = 2.675, Q2 = 4.351, Q3
= 6.626, Q3 - Q1 = 3.951.
- Q1 = 6.737, Q2 = 9.342, Q3
= 12.549, Q3 - Q1 = 5.812.
4.14.
Let Z denote the distance from the missile to the target.
P(Z < 20) = 1 - exp(-2) ~ 0.8647.
4.16.
- P(15 < X < 20) = 0.3252, P(15 < X
< 20) ~ 0.3221
- x.075 = 21.605, x0.75 ~ 22.044
5.5.
- Q1 = -1, Q2 = 0, Q3
= 1, Q3 - Q1 = 2
- Q1 = -0.816, Q2 = 0, Q3
= 0.816, Q3 - Q1 = 1.632
- Q1 = -0.727, Q2 = 0, Q3
= 0.727, Q3 - Q1 = 1.454
- Q1 = -0.7, Q2 =0, Q3
= 0.7, Q3 - Q1 = 1.4.
6.4.
- Q1 = 0.528, Q2 = 1, Q3
= 1.895, Q3 - Q1 = 1.367
- Q1 = 0.529, Q2 = 0.932, Q3
= 1.585, Q3 - Q1 = 1.056
- Q1 = 0.631, Q2 = 1.073, Q3
= 1.890, Q3 - Q1 = 1.259
- Q1 = 0.645, Q2 = 1, Q3
= 1.551, Q3 - Q1 = 0.906.
9.13.
- Q1 = 0.25, Q2 = 0.5, Q3
= 0.75, Q3 - Q1 = 0.5.
- Q1 = 0.091, Q2 = 0.206, Q3
= 0.370, Q3 - Q1 = 0.279
- Q1 = 0.630, Q2 = 0.794, Q3
= 0.909, Q3 - Q1 = 0.279
- Q1 = 0.194, Q2 = 0.314, Q3
= 0.454, Q3 - Q1 = 0.260.
- Q1 = 0.546, Q2 = 0.686, Q3
= 0.806, Q3 - Q1 = 0.260.
- Q1 = 0.379, Q2 = 0.5, Q3
= 0.621, Q3 - Q1 = 0.242.
10.7.
Q1 = 0.5364 Q2 = 0.8326, Q3
= 1.1774, Q3 - Q1 = 0.6411.
10.24.
- P(T > 1500) = 0.1966
- E(T) = 940.656, sd(T) = 787.237
- h(t) = 0.000301 t0.2.
11.3.
P(X > 4) = 1 - 49 / 6
2
~ 0.1725.
11.7.
- E(X) = 1.1106
- sd(X) = 0.5351
12.6.
Q1 = 1.1006, Q2 = 1.2599, Q3
= 1.5874, Q3 - Q1 = 0.4868
12.7. Q1
= 1.1547, Q2 = 1.4142, Q3 = 2, Q3
- Q1 = 0.8453
12.16.
Let X denote income.
- P(2000 < X < 4000) = 0.1637 so the proportion is
16.37%
- Q2 = 1259.92
- Q1 = 1100.64, Q3 = 1587.40, Q3
- Q1 = 486.76
- E(X) = 1500
- sd(X) = 866.03
- F-1(0.9) = 2154.43
13.2.
P(-1 < X < 2) = 0.6119.
13.7.
Q1 = -1.0986, Q2 = 0, Q3 =
1.0986, Q3 - Q1 = 2.1972
13.8.
F-1(0.1) = -2.1972, F-1(0.9) = 2.1972.
14.6.
P(X > 20) = 0.1497
14.7.
Q1 = 0.5097, Q2 = 1, Q3 =
1.9621, Q3 - Q1 = 1.4524
14.11.
- E(X) = exp(5 / 2) = 12.1825.
- sd(X) = [exp(6) - exp(5)]1/2 = 15.9692.